Manifestations of Middle School Learners’ Problematization Activity as an Embodied Phenomenon

View More View Less
  • 1 West Virginia University
  • | 2 The University of Georgia

Current reforms in geometry seek to challenge prevailing ideas about “what it means to do mathematics” (, p. 139) by engaging learners in “the grasping of space” (; , p. 241). This study takes up this challenge by investigating problematizing activity as an embodied phenomenon among 21 eighth-grade learners who engaged with spatial and dimensional concepts during a series of investigations around Flatland. Using a phenomenological research approach, we examined classroom discourse as well as learners’ blog postings, lived-experience descriptions, and interviews. The analysis revealed three manifestations of problematizing activity—provocation, impasse, and questioning and conjecturing activity. Embodiment was evidenced through perceptuo-motor-imaginary activity as learners juxtaposed naturally continuous space with discrete notions of space emphasized in K−12 settings.

Contributor Notes

Keri Duncan Valentine, Department of Curriculum and Instruction/Literacy Studies, West Virginia University, 607-E Allen Hall, Morgantown, WV 26506; kevalentine@mail.wvu.edu

Theodore J. Kopcha, Department of Career and Information Studies, The University of Georgia, 222 River’s Crossing, 850 College Station Road, Athens, GA 30602; tjkopcha@uga.edu

Journal for Research in Mathematics Education
  • 1.

    Abbott, E. A. (1992). Flatland: A romance of many dimensions. Dover. (Original work published 1884).

  • 2.

    Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247286. https://doi.org/10.1080/10508406.2011.611446

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Anderson, R., & Princko, J. A. (2011). What if we lived in Flatland? Mathematics Teaching in the Middle School, 16(7), 400406.

  • 4.

    Barrett, L. (2011). Beyond the brain: How body and environment shape animal and human minds. Princeton University Press.

  • 5.

    Caplan, S., Wallace, W. (Producers), Travis, J., & Johnson, D. (Directors). (2007). Flatland: The movie [Motion picture]. Flat World Productions LLC.

    • Search Google Scholar
    • Export Citation
  • 6.

    Carroll, W. M. (1998). Geometric knowledge of middle school students in a reform-based mathematics curriculum. School Science and Mathematics, 98(4), 188197. https://doi.org/10.1111/j.1949-8594.1998.tb17415.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Chemero, A. (2013). Radical embodied cognitive science. Review of General Psychology, 17(2), 145150. https://doi.org/10.1037/a0032923

  • 8.

    Clements, D. H. (2003). Teaching and learning geometry. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A Research companion to Principles and Standards for School Mathematics (pp. 151178). National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • 9.

    Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 420464). Macmillan.

    • Search Google Scholar
    • Export Citation
  • 10.

    Dahlberg, K., Dahlberg, H., & Nyström, M. (2008). Reflective lifeworld research. Studentlitteratur AB.

  • 11.

    Dewey, J. (1929). The quest for certainty: A study of the relation of knowledge and action. Minton, Balch, & Co.

  • 12.

    Dewey, J. (1933). How we think: A restatement of the relation of reflecting thinking to the educative process. Heath.

  • 13.

    Driscoll, M. (2007). Fostering geometric thinking: A guide for teachers, grades 5–10. Heinemann.

  • 14.

    Edwards, L. D. (1991). Children’s learning in a computer microworld for transformation geometry. Journal for Research in Mathematics Education, 22(2), 122137. https://doi.org/10.2307/749589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a Community of Learners classroom. Cognition and Instruction, 20(4), 399483. https://doi.org/10.1207/S1532690XCI2004_1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Freudenthal, H. (1968). Why to teach mathematics so as to be useful. Educational Studies in Mathematics, 1(1–2), 38. https://doi.org/10.1007/BF00426224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Freudenthal, H. (1973). Mathematics as an educational task. D. Reidel.

  • 18.

    Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. D. Reidel.

  • 19.

    Gibson, J. J. (1986). The ecological approach to visual perception. Taylor & Francis Group.

  • 20.

    Goldenberg, E. P., Cuoco, A. A., & Mark, J. (1998). A role for geometry in general education. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 344). Erlbaum.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hall, R., & Nemirovsky, R. (2012). Introduction to the special issue: Modalities of body engagement in mathematical activity and learning. Journal of the Learning Sciences, 21(2), 207215. https://doi.org/10.1080/10508406.2011.611447

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hansen, V. L., Vasco, C. E., Gholam, G. K., Tocki, J., Turnau, S., Shengchang, T., Fusheng, Z., & Neubrand, M. (1998). Changes and trends in geometry curricula. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century: An ICMI study (pp. 235261). Kluwer Academic. https://doi.org/10.1007/978-94-011-5226-6_8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Heidegger, M. (2008). Being and time (J. Macquarrie & E. Robinson, Trans.). HarperCollins. (Original work published 1927).

  • 24.

    Henderson, D. W. (1996, May 31–June 4) Alive mathematical reasoning. In Proceedings, 1996 Annual Meeting of the Canadian Mathematics Education Study Group (pp. 27–33). MountSaint Vincent University Press. http://www.cmesg.org/wp-content/uploads/2015/01/CMESG-1996.pdf

  • 25.

    Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., Olivier, A., & Wearne, D. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher, 25(4), 1221. https://doi.org/10.3102/0013189X025004012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hmelo-Silver, C. E., & Barrows, H. S. (2008). Facilitating collaborative knowledge building. Cognition and Instruction, 26(1), 4894. https://doi.org/10.1080/07370000701798495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Ihde, D. (1993). Postphenomenology: Essays in the postmodern context. Northwestern University Press.

  • 28.

    Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination, and reason. University of Chicago Press.

  • 29.

    Junius, P. (2008). A case example of insect gymnastics: How is non-Euclidean geometry learned? International Journal of Mathematical Education in Science and Technology, 39(8), 9871002. https://doi.org/10.1080/00207390802136529

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Keiser, J. M., Klee, A., & Fitch, K. (2003). An assessment of students’ understanding of angle. Mathematics Teaching in the Middle School, 9(2), 116119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.

  • 32.

    Lather, P. (1993). Fertile obsession: Validity after poststructuralism. The Sociological Quarterly, 34(4), 673693. https://doi.org/10.1111/j.1533-8525.1993.tb00112.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Laverty, S. M. (2003). Hermeneutic phenomenology and phenomenology: A comparison of historical and methodological considerations. International Journal of Qualitative Methods, 2(3), 2135. https://doi.org/10.1177/160940690300200303

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Lawson, H. (1985). Reflexivity: The post-modern predicament (Vol. 3). Hutchinson.

  • 35.

    Macbeth, D. (2001). On “reflexivity” in qualitative research: Two readings, and a third. Qualitative Inquiry, 7(1), 3568. https://doi.org/10.1177/107780040100700103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Mammana, C., & Villani, V. (Eds.). (1998). Perspectives on the teaching of geometry for the 21st century: An ICMI Study. Kluwer.

  • 37.

    Merleau-Ponty, M. (2002). Phenomenology of perception (C. Smith, Trans.). Routledge. (Original work published 1945).

  • 38.

    Merleau-Ponty, M. (2004). The world of perception (O. Davis, Trans.). Routledge. (Original work published 1948).

  • 39.

    Monaghan, F. (2000). What difference does it make? Children’s views of the differences between some quadrilaterals. Educational Studies in Mathematics, 42(2), 179196. https://doi.org/10.1023/A:1004175020394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Nemirovsky, R., & Ferrara, F. (2009). Mathematical imagination and embodied cognition. Educational Studies in Mathematics, 70(2), 159174. https://doi.org/10.1007/s10649-008-9150-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Nemirovsky, R., Rasmussen, C., Sweeney, G., & Wawro, M. (2012). When the classroom floor becomes the complex plane: Addition and multiplication as ways of bodily navigation. Journal of the Learning Sciences, 21(2), 287323. https://doi.org/10.1080/10508406.2011.611445

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Nicol, C., & Crespo, S. (2005). Exploring mathematics in imaginative places: Rethinking what counts as meaningful contexts for learning mathematics. School Science and Mathematics, 105(5), 240251. https://doi.org/10.1111/j.1949-8594.2005.tb18164.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Núñez, R., & Lakoff, G. (2005). The cognitive foundations of mathematics: The role of conceptual metaphor. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 109124). Psychology Press.

    • Search Google Scholar
    • Export Citation
  • 44.

    Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic Books.

  • 45.

    Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13(3), 273304. https://doi.org/10.1207/s15327809jls1303_2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Reyes, A., & Zarama, R. (1998). The process of embodying distinctions—A re-construction of the process of learning. Cybernetics & Human Knowing, 5(3), 1933.

    • Search Google Scholar
    • Export Citation
  • 47.

    Spiro, R. J., Coulson, R. L., Feltovich, P. J., & Anderson, D. K. (1988). Cognitive flexibility theory: Advanced knowledge acquisition in ill-structured domains (Technical Report No. 441). University of Illinois at Urbana-Champaign, Center for the Study of Reading.

    • Search Google Scholar
    • Export Citation
  • 48.

    Stephan, M. L., Chval, K. B., Wanko, J. J., Civil, M., Fish, M. C., Herbel-Eisenmann, B., Konold, C., & Wilkerson, T. L. (2015). Grand challenges and opportunities in mathematics education research. Journal for Research in Mathematics Education, 46(2), 134146. https://doi.org/10.5951/jresematheduc.46.2.0134

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Tuan, Y. (1977). Space and place: The perspective of experience. University of Minnesota Press.

  • 50.

    Vagle, M. D. (2014). Crafting phenomenological research. Left Coast Press.

  • 51.

    Vagle, M. D. (2018). Crafting phenomenological research (2nd ed.). Routledge.

  • 52.

    Valentine, K. D. (2014). Problematizing space and perspective: A middle school mathematics experience [Doctoral dissertation, University of Georgia]. The University of Georgia Library Electronic Theses and Dissertations (Record No. 13472). https://getd.libs.uga.edu/pdfs/valentine_keri_d_201408_phd.pdf

    • Search Google Scholar
    • Export Citation
  • 53.

    Valentine, K. D. (2017). Investigating interdimensional relationships. Mathematics Teaching in the Middle School, 22(8), 480486. https://doi.org/10.5951/mathteacmiddscho.22.8.0480

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Valentine, K. D., & Kopcha, T. J. (2014). Middle school learners’ ontological “trying-on” of dimensions: A phenomenological investigation. In J. L. Polman, E. A. Kyza, D. K. O’Neill, I. Tabak, W. R. Penuel, A. S. Jurow, K. O’Connor, T. Lee, & L. D’Amico (Eds.), Learning and becoming in practice: The International Conference of the Learning Sciences (ICLS) proceedings (Vol. 2, pp. 745752). International Society of the Learning Sciences.

    • Search Google Scholar
    • Export Citation
  • 55.

    Valentine, K. D., & Kopcha, T. J. (2016). The embodiment of cases as alternative perspective in a mathematics hypermedia learning environment. Educational Technology Research and Development, 64(6), 11831206. https://doi.org/10.1007/s11423-016-9443-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    van Manen, M. (2014). Phenomenology of practice: Meaning-giving methods in phenomenological research and writing. Left Coast Press. https://doi.org/10.4324/9781315422657

    • Search Google Scholar
    • Export Citation
  • 57.

    Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. MIT Press.

  • 58.

    Villani, V. (1998). The way ahead. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century: An ICMI Study (pp. 319327). Springer. https://doi.org/10.1007/978-94-011-5226-6_11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Williams, R. F. (2012). Image schemas in clock-reading: Latent errors and emerging expertise. The Journal of the Learning Sciences, 21(2), 216246. https://doi.org/10.1080/10508406.2011.553259

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 880 445 23
Full Text Views 214 83 9
PDF Downloads 220 125 10
EPUB Downloads 0 0 0