An Analysis of Secondary Mathematics Textbooks With Regard to Technology Integration

View More View Less
  • 1 Drake University
  • 2 East Carolina University
  • 3 Southern Methodist University

Research has demonstrated that textbooks exert a considerable influence on students’ learning opportunities and that technology has the potential to transform mathematics instruction. This brief report provides a systematic analysis of how technology tasks are integrated into secondary mathematics curricula by analyzing a sample of 20 textbooks. The results indicate that across the entire sample, nearly 15% of tasks incorporated technology, and of those, 21% used it as a reorganizer of students’ mathematical thinking; calculators were the predominant technology utilized. Investigative textbooks were not more likely to incorporate technology than conventional texts, but algebra 2 texts were more likely to include technology than geometry texts. Implications for instruction and teacher preparation are discussed.

Supplementary Materials

    • Supplemental Materials (Docx 35 KB)

Footnotes

Note: Appendices for this article are available online only at https://pubs.nctm.org/view/journals/jrme/51/3/article-p361.xml?tab_body=supplementaryMaterials

Contributor Notes

Milan F. Sherman, Drake University, 2507 University Avenue, Des Moines, IA 50311; milan.sherman@drake.edu

Charity Cayton, East Carolina University, 369A Flanagan Building, Greenville, NC 27858; caytonc@ecu.edu

Candace Walkington, Southern Methodist University, 3101 University Blvd, Ste. 345, Dallas, TX 75205; cwalkington@smu.edu

Alexandra Funsch, East Carolina University, 352 Flanagan Building, Greenville, NC 27858; alliy28@yahoo.com

Journal for Research in Mathematics Education
  • 1.

    Banilower, E. R., Smith, P. S., Weiss, I. R., Malzahn, K. A., Campbell, K. M. , & Weis, A. M. (2013). Report of the 2012 National Survey of Science and Mathematics Education. Chapel Hill, NC: Horizon Research. Retrieved from https://eric.ed.gov/?id=ED548238.

    • Search Google Scholar
    • Export Citation
  • 2.

    Bartle, S. (2013). Carnegie Learning Geometry. Carnegie Learning.

  • 3.

    Bartle, S. (2014). Carnegie Learning Algebra II. Carnegie Learning.

  • 4.

    Bates, D., Maechler, M., Bolker, B. , & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4 (Version 1.1-7) [R package]. http://CRAN.R-project.org/package=lme4.

  • 5.

    Benson, J., Cuoco, A., D’Amato, N. A., Erman, D., Baccaglini-Frank, A., Golay, A. , Gorman, J., Harvey, B., Harvey, W., Hill, C. J., Kerins, B., Kilday, D., Maurer, S., Plama, M., Saul, M., Sword, S., Thomas, B., Ting, A., & Waterman, K. (2013a). Center for Mathematics Education (CME) Project, Algebra 2: Common Core. Pearson Education.

    • Search Google Scholar
    • Export Citation
  • 6.

    Benson, J., Cuoco, A., D’Amato, N. A., Erman, D., Baccaglini-Frank, A., Golay, A. , Gorman, J., Harvey, B., Harvey, W., Hill, C. J., Kerins, B., Kilday, D., Maurer, S., Plama, M., Saul, M., Sword, S., Thomas, B., Ting, A., & Waterman, K. (2013b). Center for Mathematics Education (CME) Project, Geometry: Common Core. Pearson Education.

    • Search Google Scholar
    • Export Citation
  • 7.

    Ben-Zvi, D. (2000). Toward understanding the role of technological tools in statistical learning. Mathematical Thinking and Learning, 2(1-2), 127155. https://doi.org/10.1207/S15327833MTL0202_6

    • Search Google Scholar
    • Export Citation
  • 8.

    Burger, E. B., Chard, D. J., Kennedy, P. A., Leinwand, S. J., Renfro, F. L., Roby, T. W. , & Waits, B. K. (2012). Holt McDougal Algebra 2. Holt McDougal.

    • Search Google Scholar
    • Export Citation
  • 9.

    Burger, E. B., Chard, D. J., Kennedy, P. A., Leinwand, S. J., Renfro, F. L., Roby, T. W. , Seymour, D. G., & Waits, B. K. (2012). Holt McDougal Geometry. Holt McDougal.

    • Search Google Scholar
    • Export Citation
  • 10.

    Burrill, G., Allison, J., Breaux, G., Kastberg, S., Leatham, K. , & Sanchez, W. (2002). Handheld graphing technology in secondary mathematics: Research findings and implications for classroom practice . Texas Instruments. http://education.ti.com/sites/UK/downloads/pdf /References/Done/Burrill,G.%20(2002).pdf.

    • Export Citation
  • 11.

    Carter, J. A., Cuevas, G. J., Day, R. , & Malloy, C. E. (2014a). Glencoe Algebra 2. McGraw-Hill Education.

  • 12.

    Carter, J. A., Cuevas, G. J., Day, R. , & Malloy, C. E. (2014b). Glencoe Geometry. McGraw- Hill Education.

  • 13.

    Cayton, C. (2012). Examining the cognitive demand of tasks in three technology intensive high school Algebra 1 classrooms. In L. R. Van Zoest, J.-J. Lo , & J. L. Kratky (Eds.), Proceedings of the Thirty-Fourth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 865868). Western Michigan University.

    • Search Google Scholar
    • Export Citation
  • 14.

    Charles, R. I., Hall, B., Kennedy, D., Bellman, A. E., Bragg, S. C., Handlin, W. G., Murphy S., & Wiggins, G. (2011a). Prentice Hall Algebra 2. Pearson.

    • Search Google Scholar
    • Export Citation
  • 15.

    Charles, R. I., Kennedy, D., Hall, B., Bellman, A. E., Bragg, S. C., Handlin, W. G. , Bass, L. E., Johnson, A., Murphy, S. J., & Wiggins, G. (2011b). Prentice Hall Geometry. Pearson.

    • Search Google Scholar
    • Export Citation
  • 16.

    Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in Medicine, 19(22), 31273131. https://doi.org/10.1002/10970258(20001130)19:22<3127::AID-SIM784>3.0.CO;2-M

    • Search Google Scholar
    • Export Citation
  • 17.

    Cuban, L. (2003). Oversold and underused: Computers in the classroom. Harvard University Press.

  • 18.

    Dengler, D., Finocchi, S. B., Hadley, W. S. , & Metz, M. L. (2013). Carnegie learning integrated Math III (4th ed.). Carnegie Learning.

    • Search Google Scholar
    • Export Citation
  • 19.

    Dengler, D., Finocchi, S. B., Hadley, W. S., Metz, M. L. , & Snyder, J. (2013). Carnegie learning integrated Math II (4th ed.). Carnegie Learning.

    • Search Google Scholar
    • Export Citation
  • 20.

    Dietiker, L., Kysh, J., Sallee, T. , & Hoey, B. (2013a). Core connections: Geometry. CPM Educational Program.

  • 21.

    Dietiker, L., Kysh, J., Sallee, T. , & Hoey, B. (2013b). Core connections: Integrated II. CPM Educational Program.

  • 22.

    Grouws, D. A., Smith, M. S. , & Sztajn, P. (2004). The preparation and teaching practices of United States mathematics teachers: Grades 4 and 8. In P. Kloosterman & F. K. Lester , Jr. (Eds.), Results and Interpretations of the 1990 through 2000 Mathematics Assessment of the National Assessment of Educational Progress (pp. 221267). NCTM.

    • Search Google Scholar
    • Export Citation
  • 23.

    Grouws, D. A., Tarr, J. E., Chávez, Ó., Sears, R., Soria, V. M. , & Taylan, R. D. (2013). Curriculum and implementation effects on high school students’ mathematics learning from curricula representing subject-specific and integrated content organizations. Journal for Research in Mathematics Education, 44(2), 416463. https://doi.org/10.5951/jresemtheduc.44.2.0416

    • Search Google Scholar
    • Export Citation
  • 24.

    Heid, M. K. (1997). The technological revolution and the reform of school mathematics. American Journal of Education, 106(1), 561. https://doi.org/10.1086/444175

    • Search Google Scholar
    • Export Citation
  • 25.

    Heid, M. K. , & Blume, G. W. (Eds.). (2008). Research on technology and the teaching and learning of mathematics: Vol 1. Research syntheses. Information Age.

    • Search Google Scholar
    • Export Citation
  • 26.

    Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L., Watkins, A. E. (with Ritsema, B. E. , Walker, R. K., Keller, S., Marcus, R., Coxford, A. F., & Burrill, G.). (2015a). Core-plus mathematics: Contemporary mathematics in context, Course 2 (Common Core Ed.). McGraw-Hill Education.

    • Search Google Scholar
    • Export Citation
  • 27.

    Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L., Watkins, A. E. (with Ritsema, B. E. , Walker, R. K., Keller, S., Marcus, R., Coxford, A. F., & Burrill, G.). (2015b). Core-plus mathematics: Contemporary mathematics in context, Course 3 (Common Core Ed.). McGraw-Hill Education.

    • Search Google Scholar
    • Export Citation
  • 28.

    Hollebrands, K. F. , & Dove, A. (2011). Technology as a tool for creating and reasoning about geometry tasks. In T. P. Dick & K. F. Hollebrands (Eds.), Focus in high school mathematics: Technology to support reasoning and sense making (pp. 3352). Reston, VA: NCTM.

    • Search Google Scholar
    • Export Citation
  • 29.

    Huntley, M. A., Rasmussen, C. L., Villarubi, R. S., Sangtong, J. , & Fey, J. T. (2000). Effects of Standards-based mathematics education: A study of the Core-Plus Mathematics Project Algebra and Functions Strand. Journal for Research in Mathematics Education, 31(3), 328361. https://doi.org/10.2307/749810

    • Search Google Scholar
    • Export Citation
  • 30.

    Jones, D., Hollas, V. , & Klespis, M. (2016). The presentation of technology for teaching and learning mathematics in textbooks: Content courses for elementary teachers. Contemporary Issues in Technology & Teacher Education, 17(1), 5379.

    • Search Google Scholar
    • Export Citation
  • 31.

    Jones, D. L. , & Tarr, J. E. (2007). An examination of the levels of cognitive demand required by probability tasks in middle grades mathematics textbooks. Statistics Education Research Journal, 6(2), 427.

    • Search Google Scholar
    • Export Citation
  • 32.

    Kastberg, S. , & Leatham, K. (2005). Research on graphing calculators at the secondary level: Implications for mathematics teacher education. Contemporary Issues in Technology and Teacher Education, 5(1), 2537.

    • Search Google Scholar
    • Export Citation
  • 33.

    Kysh, J., Dietiker, L., Sallee, T. , & Hoey, B. (2013a). Core connections: Algebra 2. CPM Educational Program.

  • 34.

    Kysh, J., Dietiker, L., Sallee, T. , & Hoey, B. (2013b). Core connections: Integrated III. CPM Educational Program.

  • 35.

    Larson, R., Boswell, L., Kanold, T. D. , & Stiff, L. (2012a). Holt McDougal Larson Algebra 2. Houghton Mifflin Harcourt.

  • 36.

    Larson, R., Boswell, L., Kanold, T. D. , & Stiff, L. (2012b). Holt McDougal Larson Geometry. Houghton Mifflin Harcourt.

  • 37.

    Lee, H. , & Hollebrands, K. (2008). Preparing to teach mathematics with technology: An integrated approach to developing technological pedagogical content knowledge. Contemporary Issues in Technology and Teacher Education, 8(4), 326341.

    • Search Google Scholar
    • Export Citation
  • 38.

    Mariotti, M. A. (2000). Introduction to proof: The mediation of a dynamic software environment. Educational Studies in Mathematics, 44(1/2), 2553. https://doi.org/10.1023/A:1012733122556

    • Search Google Scholar
    • Export Citation
  • 39.

    Marrades, R. , & Gutiérrez, Á. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44(1/2), 87125. https://doi.org/10.1023/A:1012785106627

    • Search Google Scholar
    • Export Citation
  • 40.

    National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • 41.

    National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • 42.

    NGA & CCSSO. (2010). Common core state standards for mathematics. Washington, DC: Author.

  • 43.

    Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teaching and Teacher Education, 21(5), 509523. https://doi.org/10.1016/j.tate.2005.03.006

    • Search Google Scholar
    • Export Citation
  • 45.

    Oner, D. (2009). The role of dynamic geometry software in high school geometry curricula: An analysis of proof tasks. The International Journal for Technology in Mathematics Education, 16(3), 109121.

    • Search Google Scholar
    • Export Citation
  • 46.

    Otten, S., Gilbertson, N. J., Males, L. M. , & Clark, D. L. (2014). The mathematical nature of reasoning-and-proving opportunities in geometry textbooks. Mathematical Thinking and Learning, 16(1), 5179. https://doi.org/10.1080/10986065.2014.857802

    • Search Google Scholar
    • Export Citation
  • 47.

    Pea, R. D. (1985). Beyond amplification: Using the computer to reorganize mental functioning. Educational Psychologist, 20(4), 167182. https://doi.org/10.1207/s15326985ep2004_2

    • Search Google Scholar
    • Export Citation
  • 48.

    Pea, R. D. (1987). Cognitive technologies for mathematics education. In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 89122). Erlbaum.

    • Search Google Scholar
    • Export Citation
  • 49.

    Sánchez, E. , & Sacristán, A. I. (2003). Influential aspects of dynamic geometry activities in the construction of proofs. In N. A. Pateman, B. J. Dougherty , & J. T. Zilliox (Eds.), Proceedings of the 2003 Joint Meeting of PME and PMENA (Vol. 4, pp. 111118). University of Hawaii.

    • Search Google Scholar
    • Export Citation
  • 50.

    Sherman, M. (2014). The role of technology in supporting students’ mathematical thinking: Extending the metaphors of amplifier and reorganizer. Contemporary Issues in Technology and Teacher Education, 14(3), 220246.

    • Search Google Scholar
    • Export Citation
  • 51.

    Sherman, M. , & Cayton, C. (2015). Using appropriate tools strategically for instruction. The Mathematics Teacher, 109(4), 306310. https://doi.org/10.5951/mathteacher.109.4.0306

    • Search Google Scholar
    • Export Citation
  • 52.

    Sherman, M. F., Walkington, C. , & Howell, E. (2016). A comparison of symbol-precedence view in investigative and conventional textbooks used in algebra courses. Journal for Research in Mathematics Education, 47(2), 134146. https://doi.org/10.5951/jresemtheduc.47.2.0134

    • Search Google Scholar
    • Export Citation
  • 53.

    Snijders, T. A. B. , & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. Sage.

  • 54.

    Stein, M. K. , & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 5080. https://doi.org/10.1080/1380361960020103

    • Search Google Scholar
    • Export Citation
  • 55.

    Stein, M. K., Remillard, J. , & Smith, M. S. (2007). How curriculum influences student learning. In F. K. Lester , Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 319370). Information Age.

    • Search Google Scholar
    • Export Citation
  • 56.

    Stein, M. K. , & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268275.

    • Search Google Scholar
    • Export Citation
  • 57.

    Tarr, J. E., Chávez, Ó., Reys, R. E. , & Reys, B. J. (2006). From the written to the enacted curricula: The intermediary role of middle school mathematics teachers in shaping students’ opportunity to learn. School Science and Mathematics, 106(4), 191201. https://doi.org/10.1111/j.1949-8594.2006.tb18075.x

    • Search Google Scholar
    • Export Citation
  • 58.

    Tarr, J. E., Grouws, D. A., Chávez, Ó. , & Soria, V. M. (2013). The effects of content organization and curriculum implementation on students’ mathematics learning in second-year high school courses. Journal for Research in Mathematics Education, 44(4), 683729. https://doi.org/10.5951/jresemtheduc.44.4.0683

    • Search Google Scholar
    • Export Citation
  • 59.

    Thompson, D. R., Senk, S. L. , & Johnson, G. J. (2012). Opportunities to learn reasoning and proof in high school mathematics textbooks. Journal for Research in Mathematics Education, 43(3), 253295. https://doi.org/10.5951/jresemtheduc.43.3.0253

    • Search Google Scholar
    • Export Citation
  • 60.

    Walkington, C. , & Marder, M. (2014). Classroom observation and value-added models give complementary information about quality of mathematics teaching. In T. J. Kane, K. A. Kerr , & R. C. Pianta (Eds.), Designing teacher evaluation systems: New guidance from the Measures of Effective Teaching project (pp. 234277). San Francisco, CA: Jossey-Bass. https://doi.org/10.1002/9781119210856.ch8

    • Search Google Scholar
    • Export Citation
  • 61.

    Zbiek, R. M., Heid, M. K., Blume, G. , & Dick, T. P. (2007). Research on technology in mathematics education: The perspective of constructs. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 11691208). Information Age.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 310 310 52
Full Text Views 93 93 8
PDF Downloads 64 64 5
EPUB Downloads 0 0 0