Search Results

You are looking at 1 - 10 of 36 items for :

  • "CCSS.Math.Content.K.G.B.4" x
Clear All
Restricted access

Lyn D. English and Donna T. King

Contributors to the iSTEM (Integrating Science, Technology, Engineering, and Mathematics) department share ideas and activities that stimulate student interest in the integrated fields of science, technology, engineering, and mathematics (STEM) in K–grade 6 classrooms. This article is a comprehensive Earthquake Engineering activity that includes the Designing an earthquake-resistant building problem. The task was implemented in sixth-grade classes (10–11-year-olds). Students applied engineering design processes and their understanding of cross-bracing, tapered geometry, and base isolation to create numerous structures, which they tested on a “shaker table.”

Restricted access

Johnnie Wilson

Observe a first-grade teacher's use of gesture as a mathematics teaching and learning tool in his classroom.

Restricted access

Kelley Buchheister, Christa Jackson and Cynthia Taylor

A kindergarten teacher uses Gutièrrez's Four Dimensions of Equity to design and facilitate geometry instruction.

Restricted access

Günhan Caglayan

The Platonic solids, also known as the five regular polyhedra, are the five solids whose faces are congruent regular polygons of the same type. Polyhedra is plural for polyhedron, derived from the Greek poly + hedros, meaning “multi-faces.” The five Platonic solids include the tetrahedron, hexahedron, octahedron, dodecahedron, and icosahedron. Photographs 1a-d show several regular polyhedra

Restricted access

Lingguo Bu

The rise of dynamic modeling and 3-D design technologies provides appealing opportunities for mathematics teachers to reconsider a host of pedagogical issues in mathematics education, ranging from motivation to application and from visualization to physical manipulation. This article reports on a classroom teaching experiment about cube spinning, integrating traditional tools, GeoGebra (www.geogebra.org), and 3-D design and printing technologies. It highlights the rich interplay between worthwhile mathematical tasks and the strategic use of diverse technologies in sustaining sense making and problem solving with a group of prospective teachers.

Restricted access

Tutita M. Casa

This instructional tool helps students engage in discussions that foster student reasoning, then settle on correct mathematics.

Restricted access

M. Katherine Gavin and Karen G. Moylan

Research-based actions and practical ideas for implementation can help shape your differentiated instruction.

Restricted access

Ariel Robinson

This preschool teacher uses differentiation and scaffolding techniques as she reads an informational text about patterns with her young students.

Restricted access

Annie Perkins and Christy Pettis

Students are asked to solve a problem that involves viewing the characteristics of a square.

Restricted access

Claire Riddell

Exploring how many pattern blocks will completely fill the Rocket Ship puzzle, students are challenged to use the most and fewest number of blocks possible. They have the opportunity to explore the composition and decomposition of shapes and generalize ideas about the relationship between the size of the pieces and the number of pieces. Each month, elementary school teachers are presented with a problem along with suggested instructional notes; asked to use the problem in their own classrooms; and encouraged to report solutions, strategies, reflections, and misconceptions to the journal audience.