Search Results

You are looking at 1 - 10 of 39 items for :

  • "CCSS.Math.Content.HSG-CO.C.10" x
Clear All
Restricted access

Michael Todd Edwards, James Quinlan, Suzanne R. Harper, Dana C. Cox and Steve Phelps

This approach to determining measures of angles fosters stronger understanding of formal proof.

Restricted access

Natalya Vinogradova

Investigating the sum of the medians of a triangle leads to inequalities related to the perimeter.

Restricted access

Nicholas J. Gilbertson, Samuel Otten, Lorraine M. Males and D. Lee Clark

For many American students, high school geometry provides their only focused experience in writing proofs (Herbst 2002), and proof is often viewed as the application of recently learned theorems rather than a means of establishing and understanding the truth of general results (Soucy McCrone and Martin 2009).

Restricted access

Jennifer Earles Szydlik, Amy Parrott and Jason Knight Belnap

Share practice and culture through three explicit discussions about the nature of mathematics.

Restricted access

Nicholas J. Gilbertson and Kimberly Cervello Rogers

Can you find a triangle in which the three bases and three heights are integer values?

Restricted access

Dongjo Shin, Ryan C. Smith and Somin Kim

Use a framework to evaluate a tool: Is it mathematically sound? Does it offer opportunities for student engagement with little distraction? Will it afford students the chance to develop their own ideas?

Restricted access

Patrick Harless

Restricted access

Michael S. Meagher, Michael Todd Edwards and S. Asli Özgün-Koca

The Geoboard Triangle Quest yields many results. The challenge for students is to verify which—if any—are correct.

Restricted access

Charles F. Marion

Anyone who is looking for insights into the problem-solving process in mathematics is well advised to start with two books that have been in print for more than seven and three decades, respectively: How to Solve It (Pólya), first published in 1945; and The Art of Problem Posing (Brown and Walter) in 1983.

Restricted access

Zhonghong Jiang and George E. O'Brien

Using technology to explore the Three Altitudes of a Triangle problem, students devise many proofs for their conjectures.