Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Nathalie Sinclair x
Clear All Modify Search
Restricted access

Nathalie Sinclair and Alayne Armstrong

By focusing on slope and using dynamic software, students develop the ability to describe functions in a geometry context.

Restricted access

Nathalie Sinclair and Sandra Crespo

Ways in which technology-supported mathematical investigations can engage students with substantive mathematics. Article focuses particularly on the ways in which the NCTM Process and Content Standards for the elementary grades can be supported by the use of interactive software such as The Geometer's Sketchpad. Teachers will learn about technology material to use to assist in student learning.

Restricted access

Beth Herbel-Eisenmann, Nathalie Sinclair, Kathryn B. Chval, Douglas H. Clements, Marta Civil, Stephen J. Pape, Michelle Stephan, Jeffrey J. Wanko and Trena L. Wilkerson

In this commentary, we identify key influences on mathematics education that are largely outside the domain of the academic world in which most mathematics education researchers live. The groups that we identify–including the media, companies and foundations, and other academic domains–affect the public's perception of mathematics and mathematics education. Identifying this set of influences in particular is important because these groups often shape policymakers' viewpoints and decisions, but there is not always agreement between mathematics education researchers and these groups about the ways in which mathematics and mathematics education are framed. Whenever a conflict is brought to the foreground, it can be difficult to raise issues without appearing defensive or sounding querulous. It is helpful, then, to bring to bear a theory that can help us interpret this reality (Mewborn, 2005); theories can provide a way to encode, read, and examine a problem as well as offer insights into the design of new practices (Silver & Herbst, 2007). In this case, we use positioning theory to examine potential conflicts between mathematics education researchers and other groups because it offers interesting interpretive insights into the phenomenon and because it can lead to potential strategies for working toward different positionings for mathematics education researchers. We begin by explaining relevant ideas from positioning theory, including storylines, positions, and communication actions. We then use these ideas to highlight current storylines underlying communication by the abovementioned groups about mathematics and mathematics education and trace some of their historical and contextual roots. We argue that mathematics education researchers can intervene to shift these storylines and positionings and to have greater impact on policy, practice, and public perception in the future. Finally, we end by offering specific suggestions for beginning this work.