Browse

You are looking at 1 - 10 of 10 items for :

Clear All
Restricted access

Patricia F. Campbell, Masako Nishio, Toni M. Smith, Lawrence M. Clark, Darcy L. Conant, Amber H. Rust, Jill Neumayer DePiper, Toya Jones Frank, Matthew J. Griffin and Youyoung Choi

This study of early-career teachers identified a significant relationship between upper-elementary teachers' mathematical content knowledge and their students' mathematics achievement, after controlling for student- and teacher-level characteristics. Findings provide evidence of the relevance of teacher knowledge and perceptions for teacher preparation and professional development programs.

Restricted access

Shiv Karunakaran, Ben Freeburn, Nursen Konuk and Fran Arbaugh

Preservice mathematics teachers are entrusted with developing their future students' interest in and ability to do mathematics effectively. Various policy documents place an importance on being able to reason about and prove mathematical claims. However, it is not enough for these preservice teachers, and their future students, to have a narrow focus on only one type of proof (demonstration proof), as opposed to other forms of proof, such as generic example proofs or pictorial proofs. This article examines the effectiveness of a course on reasoning and proving on preservice teachers' awareness of and abilities to recognize and construct generic example proofs. The findings support assertions that such a course can and does change preservice teachers' capability with generic example proofs.

Restricted access

James E. Tarr, Douglas A. Grouws, Óscar Chávez and Victor M. Soria

We examined curricular effectiveness in high schools that offered parallel paths in which students were free to study mathematics using 1 of 2 content organizational structures, an integrated approach or a (traditional) subject-specific approach. The study involved 3,258 high school students, enrolled in either Course 2 or Geometry, in 11 schools in 5 geographically dispersed states. We constructed 3-level hierarchical linear models of scores on 3 end-of-year outcome measures: a test of common objectives, an assessment of problem solving and reasoning, and a standardized achievement test. Students in the integrated curriculum scored significantly higher than those in the subject-specific curriculum on the standardized achievement test. Significant student-level predictors included prior achievement, gender, and ethnicity. At the teacher level, in addition to Curriculum Type, the Opportunity to Learn and Classroom Learning Environment factors demonstrated significant power in predicting student scores, whereas Implementation Fidelity, Teacher Experience, and Professional Development were not significant predictors.

Restricted access

M. Katherine Gavin, Tutita M. Casa, Jill L. Adelson and Janine M. Firmender

The primary goal of Project M2 was to develop and field–test challenging geometry and measurement units for all K—2 students. This article reports on the achievement results for students in Grade 2 at 12 urban and suburban sites in 4 states using the Iowa Tests of Basic Skills (ITBS) mathematics concepts subtest and an open–response assessment. Hierarchical linear modeling indicated no significant differences between the experimental (n = 193) and comparison group (n = 192) on the ITBS (84% of items focused on number); thus, mathematics concepts were not negatively impacted by this 12–week study of geometry and measurement. Statistically significant differences (p < .001) with a large effect size (d = 0.89) favored the experimental group on the open–response assessment. Thus, the experimental group exhibited a deeper understanding of geometry and measurement concepts as measured by the open–response assessment while still performing as well on a traditional measure covering all mathematics content.

Restricted access

Douglas A. Grouws, James E. Tarr, Óscar Chávez, Ruthmae Sears, Victor M. Soria and Rukiye D. Taylan

This study examined the effect of 2 types of mathematics content organization on high school students' mathematics learning while taking account of curriculum implementation and student prior achievement. The study involved 2,161 students in 10 schools in 5 states. Within each school, approximately 1/2 of the students studied from an integrated curriculum (Course 1) and 1/2 studied from a subject-specific curriculum (Algebra 1). Hierarchical linear modeling with 3 levels showed that students who studied from the integrated curriculum were significantly advantaged over students who studied from a subject-specific curriculum on 3 end-of-year outcome measures: Test of Common Objectives, Problem Solving and Reasoning Test, and a standardized achievement test. Opportunity to learn and teaching experience were significant moderating factors.

Restricted access

Clayton M. Edwards and Brian E. Townsend

Changes to classroom rules of engagement, such as assessment, the curriculum, instruction, and the environment, can produce real results.

Restricted access

Anne K. Morris

The author presents a procedure for learning from variations that occur when instructors implement lesson plans designed by others. This kind of variation, occurring in many classrooms every day, can provide a source of information for improving curriculum, both in terms of instructional activities for students and especially in terms of clarifications for instructors to support more effective implementation. The author provides detailed descriptions, in the context of a mathematics course for preservice K-8 teachers, for using implementation variations in a practical, research-based way to study and improve teaching. The goal is to build an accumulating knowledge base for teacher education. Examples are presented to illustrate how increasingly rich lesson plans, based on observing implementation variations, can move toward achieving this goal.

Restricted access

Christine Suurtam

Teachers can use data from a research project to enhance their classroom assessment practices.

Restricted access

Constance Kamii and Kelly A. Russell

Based on Piaget's theory of logico-mathematical knowledge, 126 students in grades 2–5 were asked 6 questions about elapsed time. The main reason found for difficulty with elapsed time is children's inability to coordinate hierarchical units (hours and minutes). For example, many students answered that the duration between 8:30 and 11:00 was 3 hours 30 minutes (because from 8:00 to 11:00 is 3 hours, and 30 more minutes is 3 hours 30 minutes). Coordination was found to begin among logicomathematically advanced students, through reflective (constructive) abstraction from within. The educational implications drawn are that students must be encouraged to think about durations in daily living and to do their own thinking rather than being taught procedures for producing correct answers to elapsed-time questions.

Restricted access

Denisse R. Thompson, Sharon L. Senk and Gwendolyn J. Johnson

This article addresses the nature and extent of reasoning and proof in the written (i.e., intended) curriculum of 20 contemporary high school mathematics textbooks. Both the narrative and exercise sets in lessons dealing with the topics of exponents, logarithms, and polynomials were examined. The extent of proof-related reasoning varied by topic and textbook. Overall, about 50% of the identified properties in the 3 topic areas were justified, with about 30% of the addressed properties justified with a general argument and about 20% justified with an argument about a specific case. However, less than 6% of the exercises in the homework sets involved proof-related reasoning, with developing an argument and investigating a conjecture as the most frequently occurring types of proof-related reasoning.