In this article we illustrate how one teacher used PhET cannonball simulation as an instructional tool to improve students' algebraic reasoning in a fifth grade classroom. Three instructional phases effective to implementation of simulation included: Free play, Structured inquiry and, Synthesizing ideas.

May 2020 For the Love of Mathematics Jokes

Over the past 100 years, technology has evolved in unprecedented fashion. Calculators, computers, and smart phones have become ubiquitous, yet school mathematics experiences for many children still remain without many powerful technological tools for the exploration of mathematics. We consider the evolution of some tools as we imagine a future.

### Anne Quinn

The paper discusses technology that can help students master four triangle centers -- circumcenter, incenter, orthocenter, and centroid. The technologies are a collection of web-based apps and dynamic geometry software. Through use of these technologies, multiple examples can be considered, which can lead students to generalizations about triangle centers.

### Lindsay Reiten and Susanne Strachota

A free tool encourages students to engage in the authentic practices of statistics and data analysis.

### Scott G. Smith

Suggestions for incorporating calculator programming into the mathematics curriculum.

### Thomas G. Edwards and Kenneth R. Chelst

In a 1999 article in Mathematics Teacher, we demonstrated how graphing systems of linear inequalities could be motivated using real-world linear programming problems (Edwards and Chelst 1999). At that time, the graphs were drawn by hand, and the corner-point principle was applied to find the optimal solution. However, that approach limits the number of decision variables to two, and problems with only two decision variables are often transparent and inauthentic.

### Wayne Nirode

Using technology to solve triangle construction problems, students apply their knowledge of points of concurrency, coordinate geometry, and transformational geometry.

### Alfinio Flores

The striking results of this coin-tossing simulation help students understand the law of large numbers.

### Aaron Trocki

The advent of dynamic geometry software has changed the way students draw, construct, and measure by using virtual tools instead of or along with physical tools. Use of technology in general and of dynamic geometry in particular has gained traction in mathematics education, as evidenced in the Common Core State Standards for Mathematics (CCSSI 2010).