This article presents an example of discovering an idea through creative play. After some trial and error, I drew a wonderful image, which I later learned was a two-dimensional view of a four-dimensional shape called tesseract.
Browse
Jere Confrey, Meetal Shah, and Alan Maloney
Three learning trajectories and their connections show how to promote vertical coherence in PK–12 mathematics education.
Amanda K. Riske, Catherine E. Cullicott, Amanda Mohammad Mirzaei, Amanda Jansen, and James Middleton
We introduce the Into Math Graph tool, which students use to graph how “into" mathematics they are over time. Using this tool can help teachers foster conversations with students and design experiences that focus on engagement from the student’s perspective.
Sean P. Yee, George J. Roy, and LuAnn Graul
As mathematical patterns become more complex, students' conditional reasoning skills need to be nurtured so that students continue to critique, construct, and persevere in making sense of these complexities. This article describes a mathematical task designed around the online version of the game Mastermind to safely foster conditional reasoning.
Manouchehri Azita, Ozturk Ayse, and Sanjari Azin
In this article we illustrate how one teacher used PhET cannonball simulation as an instructional tool to improve students' algebraic reasoning in a fifth grade classroom. Three instructional phases effective to implementation of simulation included: Free play, Structured inquiry and, Synthesizing ideas.
Jennifer A. Czocher, Diana L. Moss, and Luz A. Maldonado
Conventional word problems can't help students build mathematical modeling skills. on their own. But they can be leveraged! We examined how middle and high school students made sense of word problems and offer strategies to question and extend word problems to promote mathematical reasoning.
Amber G. Candela, Melissa D. Boston, and Juli K. Dixon
We discuss how discourse actions can provide students greater access to high quality mathematics. We define discourse actions as what teachers or students say or do to elicit student contributions about a mathematical idea and generate ongoing discussion around student contributions. We provide rubrics and checklists for readers to use.
Christopher Harrow and Ms. Nurfatimah Merchant
Transferring fundamental concepts across contexts is difficult, even when deep similarities exist. This article leverages Desmos-enhanced visualizations to unify conceptual understanding of the behavior of sinusoidal function graphs through envelope curve analogies across Cartesian and polar coordinate systems.