Browse

You are looking at 1 - 10 of 71 items for :

  • Quadratics and Conics x
Clear All
Restricted access

Trena L. Wilkerson

How has NCTM leadership shaped the evolution of teaching and learning mathematics? What are your expectations for NCTM leadership?

Restricted access

JoAnne Growney

Sophia Kovalevsky's story

Restricted access

George J. Roy, Jessica S. Allen and Kelly Thacker

In this paper we illustrate how a task has the potential to provide students rich explorations in algebraic reasoning by thoughtfully connecting number concepts to corresponding conceptual underpinnings.

Restricted access

Erin E. Baldinger, Matthew P. Campbell and Foster Graif

Students need opportunities to construct definitions in mathematics. We describe a sorting activity that can help students construct and refine definitions through discussion and argumentation. We include examples from our own work of planning and implementing this sorting activity to support constructing a definition of linear function.

Restricted access

Rebecca Vinsonhaler and Alison G. Lynch

This article focuses on students use and understanding of counterexamples and is part of a research project on the role of examples in proving. We share student interviews and offer suggestions for how teachers can support student reasoning and thinking and promote productive struggle by incorporating counterexamples into the classroom.

Restricted access

Chiu Hwang

This article describes physical activities and modeling process through which–exponential patterns are understood and felt.

Restricted access

Gabriel Matney, Julia Porcella and Shannon Gladieux

This article shares the importance of giving K-12 students opportunities to develop spatial sense. We explain how we designed Quick Blocks as an activity to engage our students in both spatial reasoning and number sense. Several examples of students thinking are shared as well as a classroom dialogue.

Restricted access

Wendy B. Sanchez and David M. Glassmeyer

In this 3-part activity, students use paper-folding and an interactive computer sketch to develop the equation of a parabola given the focus and directrix.

Restricted access

When visitors enter the High Museum in Atlanta, one of the first pieces of art they encounter is Physic Garden, by Molly Hatch (details in photographs 1 and 2). Physic Garden consists of 456 handpainted dinner plates arranged to form a rectangle with 24 horizontal rows and 19 vertical columns and extends from the floor to the ceiling of the first floor. The design of the “plate painting” was inspired by two mid-18th-century English ceramic plates from the museum's collection (photograph 3).

Restricted access

Michael Weiss

One of the central components of high school algebra is the study of quadratic functions and equations. The Common Core State Standards (CCSSI 2010) for Mathematics states that students should learn to solve quadratic equations through a variety of methods (CCSSM A-REI.4b) and use the information learned from those methods to sketch the graphs of quadratic (and other polynomial) functions (CCSSM A-APR.3). More specifically, students learn to graph a quadratic function by doing some combination of the following:

  • Locating its zeros (x-intercepts)
  • Locating its y-intercept
  • Locating its vertex and axis of symmetry
  • Plotting additional points, as needed