Few high school students associate mathematics with playfulness. In this paper, we offer a series of lessons focused on the underlying algebraic structures of the Rubik's Cube. The Rubik's Cube offers students an interesting space to enjoy the playful side of mathematics, while appreciating mathematics otherwise lost in routine experiences.

# Browse

May 2020 For the Love of Mathematics Jokes

### Anne Quinn

The paper discusses technology that can help students master four triangle centers -- circumcenter, incenter, orthocenter, and centroid. The technologies are a collection of web-based apps and dynamic geometry software. Through use of these technologies, multiple examples can be considered, which can lead students to generalizations about triangle centers.

When visitors enter the High Museum in Atlanta, one of the first pieces of art they encounter is Physic Garden, by Molly Hatch (details in **photographs 1 and 2**). Physic Garden consists of 456 handpainted dinner plates arranged to form a rectangle with 24 horizontal rows and 19 vertical columns and extends from the floor to the ceiling of the first floor. The design of the “plate painting” was inspired by two mid-18th-century English ceramic plates from the museum's collection (**photograph 3**).

### Carolyn James, Ana Casas, and Douglas Grant

Encouraging students to justify earlier as they attempt to solve an open-ended task can lead to greater understanding and engagement.

### Anna F. DeJarnette, Sahid L. Rosado Lausell, and Gloriana González

Turn a typical geometry problem into a great task that promotes students' reasoning and sense making.

## Mathematical Explorations: A New Twist on Collaborative Learning

### classroom-ready activities

### Stephanie M. Butman

Research on students' learning has made it clear that learning happens through an interaction with others and through communication. In the classroom, the more students talk and discuss their ideas, the more they learn. However, within a one-hour period, it is hard to give everyone an equal opportunity to talk and share their ideas. Organizing students in groups distributes classroom talk more widely and equitably (Cohen and Lotan 1997).

### Wayne Nirode

Using technology to solve triangle construction problems, students apply their knowledge of points of concurrency, coordinate geometry, and transformational geometry.

## Mathematical Explorations: Find the Distance: No Formula Necessary

### classroom-ready activities

### Ryota Matsuura and Yu Yan Xu

This activity involves finding the distance between two points in a coordinate plane and emphasizes reasoning from repeated calculations, which is one of the mathematical practices specified by the Common Core State Standards for Mathematics.

### Chris Harrow and Lillian Chin

Exploration, innovation, proof: For students, teachers, and others who are curious, keeping your mind open and ready to investigate unusual or unexpected properties will always lead to learning something new. Technology can further this process, allowing various behaviors to be analyzed that were previously memorized or poorly understood. This article shares the adventure of one such discovery of exploration, innovation, and proof that was uncovered when a teacher tried to find a smoother way to model conic sections using dynamic technology. When an unexpected pattern regarding the locus of an ellipse's or hyperbola's foci emerged, he pitched the problem to a ninth grader as a challenge, resulting in a marvelous adventure for both teacher and student. Beginning with the evolution of the ideas that led to the discovery of the focal locus and ending with the significant student-written proof and conclusion, we hope to inspire further classroom use of technology to enhance student learning and discovery.