We discuss how discourse actions can provide students greater access to high quality mathematics. We define discourse actions as what teachers or students say or do to elicit student contributions about a mathematical idea and generate ongoing discussion around student contributions. We provide rubrics and checklists for readers to use.

# Browse

### Erell Germia and Nicole Panorkou

We present a Scratch task we designed and implemented for teaching and learning coordinates in a dynamic and engaging way. We use the 5Es framework to describe the students' interactions with the task and offer suggestions of how other teachers may adopt it to successfully implement Scratch tasks.

### Hamilton L. Hardison and Hwa Young Lee

In this article, we discuss funky protractor tasks, which we designed to provide opportunities for students to reason about protractors and angle measure. We address how we have implemented these tasks, as well as how students have engaged with them.

### Anne Quinn

The paper discusses technology that can help students master four triangle centers -- circumcenter, incenter, orthocenter, and centroid. The technologies are a collection of web-based apps and dynamic geometry software. Through use of these technologies, multiple examples can be considered, which can lead students to generalizations about triangle centers.

### Debasmita Basu, Nicole Panorkou, Michelle Zhu, Pankaj Lal, and Bharath K. Samanthula

We provide an example from our integrated math and science curriculum where students explore the mathematical relationships underlying various science phenomena. We present the tasks we designed for exploring the covariation relationships that underlie the concept of gravity and discuss the generalizations students made as they interacted with those tasks.

### Katherine E. Lewis

Mathematical learning disability (MLD) research often conflates low achievement with disabilities and focuses exclusively on deficits of students with MLDs. In this study, the author adopts an alternative approach using a response-to-intervention MLD classification model to identify the resources students draw on rather than the skills they lack. Detailed diagnostic analyses of the sessions revealed that the students understood mathematical representations in atypical ways and that this directly contributed to the persistent difficulties they experienced. Implications for screening and remediation approaches are discussed.

### Nicholas J. Gilbertson, Samuel Otten, Lorraine M. Males, and D. Lee Clark

For many American students, high school geometry provides their only focused experience in writing proofs (Herbst 2002), and proof is often viewed as the application of recently learned theorems rather than a means of establishing and understanding the truth of general results (Soucy McCrone and Martin 2009).