Returning to in-person learning after COVID-19, our goal was to use our district’s framework along with the CASEL 5 to help us address the social and emotional learning needs of our students without losing the integrity of the mathematics.
Browse
Kathryn Lavin Brave and Jillian Miller
Two teachers describe how to use Fermi Questions to illuminate the connections between the Standards for Mathematical Practice and the social and emotional learning competencies.
Luz A. Maldonado Rodríguez, Naomi Jessup, Marrielle Myers, Nicole Louie, and Theodore Chao
Elementary mathematics teacher education often draws on research-based frameworks that center children as mathematical thinkers, grounding teaching in children’s mathematical strategies and ideas and as a means to attend to equity in mathematics teaching and learning. In this conceptual article, a group of critical mathematics teacher educators of color reflect on the boundaries of Cognitively Guided Instruction (CGI) as a research-based mathematical instructional framework advancing equity through a sociopolitical perspective of mathematics instruction connected to race, power, and identity. We specifically discuss CGI along the dominant and critical approaches to equity outlined by , ) framework. We present strategies used to extend our work with CGI and call for the field to continue critical conversations of examining mathematical instructional frameworks as we center equity and criticality.
Madelyn W. Colonnese
A teacher implements this type of personal prose in the classroom to help students make sense of fractions and communicate ideas.
Crystal Kalinec-Craig, Emily P. Bonner, and Traci Kelley
This article describes an innovation in an elementary mathematics education course called SEE Math (Support and Enrichment Experiences in Mathematics), which aims to support teacher candidates (TCs) as they learn to teach mathematics through problem solving while promoting equity during multiple experiences with a child. During this 8-week program, TCs craft and implement tasks that promote problem solving in the context of a case study of a child’s thinking while collecting and analyzing student data to support future instructional decisions. The program culminates in a mock parent–teacher conference. Data samples show how SEE Math offers TCs an opportunity to focus on the nuances of children’s strengths rather than traditional measures of achievement and skill.
Katherine Baker, Naomi A. Jessup, Victoria R. Jacobs, Susan B. Empson, and Joan Case
Productive struggle is an essential part of mathematics instruction that promotes learning with deep understanding. A video scenario is used to provide a glimpse of productive struggle in action and to showcase its characteristics for both students and teachers. Suggestions for supporting productive struggle are provided.
LouAnn H. Lovin
Moving beyond memorization of probability rules, the area model can be useful in making some significant ideas in probability more apparent to students. In particular, area models can help students understand when and why they multiply probabilities and when and why they add probabilities.
Tracy E. Dobie and Miriam Gamoran Sherin
Language is key to how we understand and describe mathematics teaching and learning. Learning new terms can help us reflect on our practice and grow as teachers, yet may require us to be intentional about where and how we look for opportunities to expand our lexicons.
Zachary A. Stepp
“It's a YouTube World” (Schaffhauser, 2017), and educators are using digital tools to enhance student learning now more than ever before. The research question scholars need to explore is “what makes an effective instructional video?”.
Susan Baker Empson, Victoria R. Jacobs, Naomi A. Jessup, Ms. Amy Hewitt, D'Anna Pynes, and Gladys Krause
The complexity of understanding unit fractions is often underappreciated in instruction. We introduce a continuum of children's understanding of unit fractions to explore this complexity and to help teachers make sense of children's strategies and recognize milestones in the development of unit-fraction understanding. Suggestions for developing this understanding are provided.