Browse
Puddle Play!
Deanna Pecaski McLennan
Student Engagement with the “Into Math Graph" Tool
Amanda K. Riske, Catherine E. Cullicott, Amanda Mohammad Mirzaei, Amanda Jansen, and James Middleton
We introduce the Into Math Graph tool, which students use to graph how “into" mathematics they are over time. Using this tool can help teachers foster conversations with students and design experiences that focus on engagement from the student’s perspective.
Let's Hit the Target!
Manouchehri Azita, Ozturk Ayse, and Sanjari Azin
In this article we illustrate how one teacher used PhET cannonball simulation as an instructional tool to improve students' algebraic reasoning in a fifth grade classroom. Three instructional phases effective to implementation of simulation included: Free play, Structured inquiry and, Synthesizing ideas.
Using Scratch Programming to Explore Coordinates
Erell Germia and Nicole Panorkou
We present a Scratch task we designed and implemented for teaching and learning coordinates in a dynamic and engaging way. We use the 5Es framework to describe the students' interactions with the task and offer suggestions of how other teachers may adopt it to successfully implement Scratch tasks.
Triangle Center Technology
Anne Quinn
The paper discusses technology that can help students master four triangle centers -- circumcenter, incenter, orthocenter, and centroid. The technologies are a collection of web-based apps and dynamic geometry software. Through use of these technologies, multiple examples can be considered, which can lead students to generalizations about triangle centers.
Quick Reads: Using Technology to Build a Pen for Browser
a good idea in a small package
Leigh Haltiwanger, Robert M. Horton, and Brooke Lance
Making mathematics meaningful is a challenge that all math teachers endeavor to meet. As math teachers, we spend countless hours crafting problems that will energize students and help them connect mathematical topics to their everyday lives. Being successful in our efforts requires that we allow students to explore ideas before we provide explanations and demands that we ask questions to promote a depth of thinking and reasoning that would not occur without such probing (Marshall and Horton 2009).
Triangles from Three Points
Wayne Nirode
Using technology to solve triangle construction problems, students apply their knowledge of points of concurrency, coordinate geometry, and transformational geometry.
Technology-Enhanced Discovery
Chris Harrow and Lillian Chin
Exploration, innovation, proof: For students, teachers, and others who are curious, keeping your mind open and ready to investigate unusual or unexpected properties will always lead to learning something new. Technology can further this process, allowing various behaviors to be analyzed that were previously memorized or poorly understood. This article shares the adventure of one such discovery of exploration, innovation, and proof that was uncovered when a teacher tried to find a smoother way to model conic sections using dynamic technology. When an unexpected pattern regarding the locus of an ellipse's or hyperbola's foci emerged, he pitched the problem to a ninth grader as a challenge, resulting in a marvelous adventure for both teacher and student. Beginning with the evolution of the ideas that led to the discovery of the focal locus and ending with the significant student-written proof and conclusion, we hope to inspire further classroom use of technology to enhance student learning and discovery.
Technology Tips: Teaching Inverses with Technology Is “Sweeeet”
Michael Tamblyn
A wonderful experience occurred in a class that I was teaching recently. It was a precalculus class, the last period of the day. The local university had brought over its cadre of preservice secondary school mathematics teachers to observe my class, so there were twenty-four additional eyes on me that day.
Squeezing Bubbles into Corners
Martin Griffiths
I always seek activities that might stretch my students yet would be accessible to them; that might require logical thought yet would contain counterintuitive elements; that might provide the opportunity to venture into new mathematical realms yet would have a simple starting point. This article and the activity that inspired it did indeed arise by way of a relatively straightforward problem that I proposed to one of my classes.