This department provides a space for current and past PK–12 teachers of mathematics to connect with other teachers of mathematics through their stories that lend personal and professional support.
Browse
José N. Contreras
Linda L. Cooper
Growing Problem Solvers provides four original, related, classroom-ready mathematical tasks, one for each grade band. Together, these tasks illustrate the trajectory of learners’ growth as problem solvers across their years of school mathematics.
May 2020 For the Love of Mathematics Jokes
Matt Enlow and S. Asli Özgün-Koca
This month's Growing Problem Solvers focuses on Data Analysis across all grades beginning with visual representations of categorical data and moving to measures of central tendency using a “working backwards” approach.
Anna F. DeJarnette, Sahid L. Rosado Lausell, and Gloriana González
Turn a typical geometry problem into a great task that promotes students' reasoning and sense making.
Mathematical Explorations: A New Twist on Collaborative Learning
classroom-ready activities
Stephanie M. Butman
Research on students' learning has made it clear that learning happens through an interaction with others and through communication. In the classroom, the more students talk and discuss their ideas, the more they learn. However, within a one-hour period, it is hard to give everyone an equal opportunity to talk and share their ideas. Organizing students in groups distributes classroom talk more widely and equitably (Cohen and Lotan 1997).
Wayne Nirode
Using technology to solve triangle construction problems, students apply their knowledge of points of concurrency, coordinate geometry, and transformational geometry.
Chris Harrow and Lillian Chin
Exploration, innovation, proof: For students, teachers, and others who are curious, keeping your mind open and ready to investigate unusual or unexpected properties will always lead to learning something new. Technology can further this process, allowing various behaviors to be analyzed that were previously memorized or poorly understood. This article shares the adventure of one such discovery of exploration, innovation, and proof that was uncovered when a teacher tried to find a smoother way to model conic sections using dynamic technology. When an unexpected pattern regarding the locus of an ellipse's or hyperbola's foci emerged, he pitched the problem to a ninth grader as a challenge, resulting in a marvelous adventure for both teacher and student. Beginning with the evolution of the ideas that led to the discovery of the focal locus and ending with the significant student-written proof and conclusion, we hope to inspire further classroom use of technology to enhance student learning and discovery.