Building a Digit Classifier with MNIST

Author:
Jedediyah Williams Belmont High School, Massachusetts

Search for other papers by Jedediyah Williams in
Current site
Google Scholar
PubMed
Close

Students use feature engineering to build a classifier that can accurately recognize digits from images.

  • Collapse
  • Expand
Mathematics Teacher: Learning and Teaching PK-12
  • Akgun, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI Ethics, 2(3), 431440. https://doi.org/10.1007/s43681-021-00096-7

    • Search Google Scholar
    • Export Citation
  • Benjamin, R. (2019, October 29). The new Jim code? Race, carceral technoscience, and liberatory imagination. Othering & Belonging Institute. https://www.youtube.com/watch?t=3510&v=JahO1-saibU&feature=youtu.be

  • Birhane, A. (2021). The impossibility of automating ambiguity. Artificial Life, 27(1), 4461. https://doi.org/10.1162/artl_a_00336

  • Broussard, M. (2019). Artificial unintelligence: How computers misunderstand the world. MIT Press.

  • Deng, L. (2012). The MNIST database of handwritten digit images for machine learning research [Best of the Web]. IEEE Signal Processing Magazine, 29(6), 141142. https://doi.org/10.1109/MSP.2012.2211477

    • Search Google Scholar
    • Export Citation
  • D’Ignazio, C., & Klein, L. F. (2023). Data feminism. MIT Press.

  • Eubanks, V. (2019). Automating inequality: How high-tech tools profile, police, and punish the poor. Picador.

  • Garris, M. (2019, March 26). Michael Garris: The story of the MNIST dataset. YouTube. https://www.youtube.com/watch?v=oKzNUGz21JM

  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With applications in R. Springer New York.

    • Search Google Scholar
    • Export Citation
  • Jones, J. (2021). Integrating machine learning in secondary geometry. Mathematics Teacher: Learning and Teaching PK-12, 114(4), 325329. https://doi.org/10.5951/MTLT.2020.0187

    • Search Google Scholar
    • Export Citation
  • Kapoor, S., & Narayanan, A. (2022). Leakage and the reproducibility crisis in ML-based science. https://reproducible.cs.princeton.edu/#rep-failures

  • Krolik, A., & Hill, K. (2019, October 11). How photos of your kids are powering surveillance technology. The New York Times. https://www.nytimes.com/interactive/2019/10/11/technology/flickr-facial-recognition.html

  • Lee, V., Hoda Wilkerson, M., & Lanouette, K. (2021). A call for a humanistic stance toward K–12 data science education. Educational Research, 50(9), 585687. https://doi.org/10.3102/0013189X211048810

    • Search Google Scholar
    • Export Citation
  • National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. http://corestandards.org

  • Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. NYU Press.

  • O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown.

  • Raji, I. D., Kumar, I. E., Horowitz, A., & Selbst, A. (2022, June). The fallacy of AI functionality. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (pp. 959972). https://doi.org/10.1145/3531146.3533158

    • Search Google Scholar
    • Export Citation
  • Wachter-Boettcher, S. (2018). Technically wrong: Sexist apps, biased algorithms, and other threats of toxic tech. Norton.

  • Williams, J. (2021). Data science and consequences in mathematical modeling. https://jedediyah.github.io/nctm2021/

All Time Past Year Past 30 Days
Abstract Views 1565 253 14
Full Text Views 98 28 2
PDF Downloads 221 109 2
EPUB Downloads 0 0 0