Interleaving in Mathematical Category Learning

Author:
Paul Rowlandson Durham University

Search for other papers by Paul Rowlandson in
Current site
Google Scholar
PubMed
Close
and
Adrian Simpson Durham University

Search for other papers by Adrian Simpson in
Current site
Google Scholar
PubMed
Close

On the basis of a substantial, robust, and well-replicated cognitive science research literature, interleaving has been recommended across a range of professional pedagogical works as an evidence-based strategy for mathematics teachers. This report first notes the conflation of interleaving and spacing effects underpinning those recommendations and the limitations of some laboratory-based research as grounding for practice, particularly given that no direct interleaving research involves mathematical concepts with school students. It then reports on two large classroom experiments aimed at replicating the direct interleaving-versus-blocking effect, alongside a more common teaching approach, for learning well-defined mathematical categories (angle relations). Repeated failure to detect an interleaving-versus-blocking effect raises the question of whether this effect is relevant to learning defined mathematical concepts.

Contributor Notes

Paul Rowlandson, School of Education, Durham University, Durham, DH1 3LE, United Kingdom; pfrowlandson@gmail.com

Adrian Simpson (corresponding author), School of Education, Durham University, Durham, DH1 3LE, United Kingdom; adrian.simpson@durham.ac.uk

  • Collapse
  • Expand
Journal for Research in Mathematics Education
  • Agarwal, P. K., & Bain, P. M. (2019). Powerful teaching: Unleash the science of learning. Wiley. https://doi.org/10.1002/9781119549031

  • Alcock, L., & Simpson, A. (2002). Definitions: Dealing with categories mathematically. For the Learning of Mathematics, 22(2), 2834. https://flm-journal.org/Articles/1D8C9B14ED63F9BA0B3C18E0F34A43.pdf

    • Search Google Scholar
    • Export Citation
  • Alcock, L., & Simpson, A. (2017). Interactions between defining, explaining and classifying: The case of increasing and decreasing sequences. Educational Studies in Mathematics, 94(1), 519. https://doi.org/10.1007/s10649-016-9709-4

    • Search Google Scholar
    • Export Citation
  • Barton, C. (2018). How I wish I’d taught maths: Lessons learned from research, conversations with experts, and 12 years of mistakes. John Catt.

    • Search Google Scholar
    • Export Citation
  • Birnbaum, M. S., Kornell, N., Bjork, E. L., & Bjork, R. A. (2013). Why interleaving enhances inductive learning: The roles of discrimination and retrieval. Memory & Cognition, 41(3), 392402. https://doi.org/10.3758/s13421-012-0272-7

    • Search Google Scholar
    • Export Citation
  • Brown, P. C., Roediger, H. L., III, & McDaniel, M. A. (2014). Make it stick: The science of successful learning. Harvard University Press. https://doi.org/10.4159/9780674419377

    • Search Google Scholar
    • Export Citation
  • Brunmair, M., & Richter, T. (2019). Similarity matters: A meta-analysis of interleaved learning and its moderators. Psychological Bulletin, 145(11), 10291052. https://doi.org/10.1037/bul0000209

    • Search Google Scholar
    • Export Citation
  • Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 3148. https://doi.org/10.2307/749317

    • Search Google Scholar
    • Export Citation
  • Busch, B., & Watson, E. (2019). The science of learning: 77 studies that every teacher needs to know. Routledge. https://doi.org/10.4324/9780429461545

    • Search Google Scholar
    • Export Citation
  • Carvalho, P., & Goldstone, R. (2012). Category structure modulates interleaving and blocking advantage in inductive category acquisition. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th annual meeting of the Cognitive Science Society (pp. 186191). UC Merced. https://escholarship.org/uc/item/0nw0d367

    • Search Google Scholar
    • Export Citation
  • Chen, O., Paas, F., & Sweller, J. (2021). Spacing and interleaving effects require distinct theoretical bases: A systematic review testing the cognitive load and discriminative-contrast hypotheses. Educational Psychology Review, 33, 14991522. https://doi.org/10.1007/s10648-021-09613-w

    • Search Google Scholar
    • Export Citation
  • Crandall, C. S., & Sherman, J. W. (2016). On the scientific superiority of conceptual replications for scientific progress. Journal of Experimental Social Psychology, 66, 9399. https://doi.org/10.1016/j.jesp.2015.10.002

    • Search Google Scholar
    • Export Citation
  • Deans for Impact. (2015). The science of learning. https://www.deansforimpact.org/tools-and-resources/the-science-of-learning

  • Dimmel, J. K., & Herbst, P. G. (2015). The semiotic structure of geometry diagrams: How textbook diagrams convey meaning. Journal for Research in Mathematics Education, 46(2), 147195. https://doi.org/10.5951/jresematheduc.46.2.0147

    • Search Google Scholar
    • Export Citation
  • Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processings. In R. Sutherland and J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 142157). Springer. https://doi.org/10.1007/978-3-642-57771-0_10

    • Search Google Scholar
    • Export Citation
  • Ebbinghaus, H. (1885). Über das Gedächtnis: Untersuchungen zur experimentellen Psychologie [Memory: A contribution to experimental psychology]. Duncker & Humblot.

    • Search Google Scholar
    • Export Citation
  • Eglington, L. G., & Kang, S. H. K. (2017). Interleaved presentation benefits science category learning. Journal of Applied Research in Memory and Cognition, 6(4), 475485. https://doi.org/10.1016/j.jarmac.2017.07.005

    • Search Google Scholar
    • Export Citation
  • Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal of Experimental Psychology: General, 127(2), 107140. https://doi.org/10.1037/0096-3445.127.2.107

    • Search Google Scholar
    • Export Citation
  • Firth, J., Rivers, I., & Boyle, J. (2021). A systematic review of interleaving as a concept learning strategy. Review of Education, 9(2), 642684. https://doi.org/10.1002/rev3.3266

    • Search Google Scholar
    • Export Citation
  • Foster, N. L., Mueller, M. L., Was, C., Rawson, K. A., & Dunlosky, J. (2019). Why does interleaving improve math learning?: The contributions of discriminative contrast and distributed practice. Memory & Cognition, 47(6), 10881101. https://doi.org/10.3758/s13421-019-00918-4

    • Search Google Scholar
    • Export Citation
  • Fujita, T., & Jones, K. (2007). Learners’ understanding of the definitions and hierarchical classification of quadrilaterals: Towards a theoretical framing. Research in Mathematics Education, 9(1), 320. https://doi.org/10.1080/14794800008520167

    • Search Google Scholar
    • Export Citation
  • Gal, H., & Linchevski, L. (2010). To see or not to see: Analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74(2), 163183. https://doi.org/10.1007/s10649-010-9232-y

    • Search Google Scholar
    • Export Citation
  • Gutiérrez, A., & Jaime, A. (1998). On the assessment of the van Hiele levels of reasoning. Focus on Learning Problems in Mathematics, 20(2–3), 2746. https://www.uv.es/gutierre/archivos1/textospdf/GutJai98.pdf

    • Search Google Scholar
    • Export Citation
  • Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes of inference, learning, and discovery. MIT Press. https://doi.org/10.7551/mitpress/3729.001.0001

    • Search Google Scholar
    • Export Citation
  • Kang, S. H. K., & Pashler, H. (2012). Learning painting styles: Spacing is advantageous when it promotes discriminative contrast. Applied Cognitive Psychology, 26(1), 97103. https://doi.org/10.1002/acp.1801

    • Search Google Scholar
    • Export Citation
  • Kornell, N., & Bjork, R. A. (2008). Learning concepts and categories: Is spacing the “enemy of induction?” Psychological Science, 19(6), 585592. https://doi.org/10.1111/j.1467-9280.2008.02127.x

    • Search Google Scholar
    • Export Citation
  • Kornell, N., Castel, A. D., Eich, T. S., & Bjork, R. A. (2010). Spacing as the friend of both memory and induction in young and older adults. Psychology and Aging, 25(2), 498503. https://doi.org/10.1037/a0017807

    • Search Google Scholar
    • Export Citation
  • Kurtz, K. H., & Hovland, C. I. (1956). Concept learning with differing sequences of instances. Journal of Experimental Psychology, 51(4), 239243. https://doi.org/10.1037/h0040295

    • Search Google Scholar
    • Export Citation
  • Laborde, C. (2005). The hidden role of diagrams in students’ construction of meaning in geometry. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.), Meaning in mathematics education (pp. 159179). Springer. https://doi.org/10.1007/0-387-24040-3_11

    • Search Google Scholar
    • Export Citation
  • Little, D. R., Nosofsky, R. M., & Denton, S. E. (2011). Response-time tests of logical-rule models of categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(1), 127. https://doi.org/10.1037/a0021330

    • Search Google Scholar
    • Export Citation
  • Markman, E. M. (1991). Categorization and naming in children: Problems of induction. MIT Press. https://doi.org/10.7551/mitpress/1750.001.0001

    • Search Google Scholar
    • Export Citation
  • Mayo, D. G. (2018). Statistical inference as severe testing: How to get beyond the statistics wars. Cambridge University Press. https://doi.org/10.1017/9781107286184

    • Search Google Scholar
    • Export Citation
  • McCourt, M. (2019). Teaching for mastery. John Catt.

  • Metcalfe, J., & Xu, J. (2016). People mind wander more during massed than spaced inductive learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(6), 978984. https://doi.org/10.1037/xlm0000216

    • Search Google Scholar
    • Export Citation
  • Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92(3), 289316. https://doi.org/10.1037/0033-295X.92.3.289

    • Search Google Scholar
    • Export Citation
  • Nelson, G., & Powell, S. R. (2018). Computation error analysis: Students with mathematics difficulty compared to typically achieving students. Assessment for Effective Intervention, 43(3), 144156. https://doi.org/10.1177/1534508417745627

    • Search Google Scholar
    • Export Citation
  • Nemeth, L., Werker, K., Arend, J., Vogel, S., & Lipowsky, F. (2019). Interleaved learning in elementary school mathematics: Effects on the flexible and adaptive use of subtraction strategies. Frontiers in Psychology, 10, Article 86. https://doi.org/10.3389/fpsyg.2019.00086

    • Search Google Scholar
    • Export Citation
  • Office for Standards in Education. (2021). Research review series: Mathematics. https://www.gov.uk/government/publications/research-review-series-mathematics/research-review-series-mathematics

    • Search Google Scholar
    • Export Citation
  • Okumus, S., & Zeybek Simsek, Z. (2021). Prospective mathematics teachers’ use of linguistic signifiers in the context of angles formed by two lines cut by a transversal. The Journal of Mathematical Behavior, 63, Article 100890. https://doi.org/10.1016/j.jmathb.2021.100890

    • Search Google Scholar
    • Export Citation
  • Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51, 195203. https://doi.org/10.3758/s13428-018-01193-y

    • Search Google Scholar
    • Export Citation
  • Perry, T., Lea, R., Jørgensen, C. R., Cordingley, P., Shapiro, K., & Youdell, D. (with Harrington, J., Fancourt, A., Crisp, P., Gamble, N., & Pomareda, C.). (2021). Cognitive science in the classroom: Evidence and practice review. Education Endowment Foundation. https://educationendowmentfoundation.org.uk/education-evidence/evidence-reviews/cognitive-science-approaches-in-the-classroom

    • Search Google Scholar
    • Export Citation
  • Rau, M. A., Aleven, V., & Rummel, N. (2013). Interleaved practice in multi-dimensional learning tasks: Which dimension should we interleave? Learning and Instruction, 23, 98114. https://doi.org/10.1016/j.learninstruc.2012.07.003

    • Search Google Scholar
    • Export Citation
  • Rohrer, D., Dedrick, R. F., & Burgess, K. (2014). The benefit of interleaved mathematics practice is not limited to superficially similar kinds of problems. Psychonomic Bulletin & Review, 21(5), 13231330. https://doi.org/10.3758/s13423-014-0588-3

    • Search Google Scholar
    • Export Citation
  • Rohrer, D., Dedrick, R. F., & Hartwig, M. K. (2020). The scarcity of interleaved practice in mathematics textbooks. Educational Psychology Review, 32, 873883. https://doi.org/10.1007/s10648-020-09516-2

    • Search Google Scholar
    • Export Citation
  • Rohrer, D., Dedrick, R. F., Hartwig, M. K., & Cheung, C.-N. (2020). A randomized controlled trial of interleaved mathematics practice. Journal of Educational Psychology, 112(1), 4052. https://doi.org/10.1037/edu0000367

    • Search Google Scholar
    • Export Citation
  • Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 2748). Erlbaum. https://doi.org/10.4324/9781032633275-4

    • Search Google Scholar
    • Export Citation
  • Sana, F., Yan, V. X., & Kim, J. A. (2017). Study sequence matters for the inductive learning of cognitive concepts. Journal of Educational Psychology, 109(1), 8498. https://doi.org/10.1037/edu0000119

    • Search Google Scholar
    • Export Citation
  • Slone, L. K., & Sandhofer, C. M. (2017). Consider the category: The effect of spacing depends on individual learning histories. Journal of Experimental Child Psychology, 159, 3449. https://doi.org/10.1016/j.jecp.2017.01.010

    • Search Google Scholar
    • Export Citation
  • Sumeracki, M., Nebel, C., Kuepper-Tetzel, C., & Kaminske, A. N. (2023). Ace that test: A student’s guide to learning better. Taylor & Francis. https://doi.org/10.4324/9781003327530

    • Search Google Scholar
    • Export Citation
  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151169. https://doi.org/10.1007/BF00305619

    • Search Google Scholar
    • Export Citation
  • Texas Education Agency. (2024). Instructional materials review and approval: Mathematics K–12 quality rubric. https://tea.texas.gov/academics/instructional-materials/house-bill-1605/sboe-approved-imra-k-12-math-rubric.pdf

    • Search Google Scholar
    • Export Citation
  • Wahlheim, C. N., Dunlosky, J., & Jacoby, L. L. (2011). Spacing enhances the learning of natural concepts: An investigation of mechanisms, metacognition, and aging. Memory & Cognition, 39(5), 750763. https://doi.org/10.3758/s13421-010-0063-y

    • Search Google Scholar
    • Export Citation
  • Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: Learners generating examples. Erlbaum. https://doi.org/10.4324/9781410613714

    • Search Google Scholar
    • Export Citation
  • Weinstein, Y., Sumeracki, M., & Caviglioli, O. (2018). Understanding how we learn: A visual guide. Routledge. https://doi.org/10.4324/9780203710463

    • Search Google Scholar
    • Export Citation
  • Zawojewski, J. S., & Shaughnessy, J. M. (2000). Data and chance. In E. A. Silver & P. A. Kenney (Eds.), Results from the seventh mathematics assessment of the National Assessment of Educational Progress (pp. 235268). National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • Zulkiply, N. (2013). Effect of interleaving exemplars presented as auditory text on long-term retention in inductive learning. Procedia: Social and Behavioral Sciences, 97, 238245. https://doi.org/10.1016/j.sbspro.2013.10.228

    • Search Google Scholar
    • Export Citation
  • Zulkiply, N., & Burt, J. S. (2013a). The exemplar interleaving effect in inductive learning: Moderation by the difficulty of category discriminations. Memory & Cognition, 41(1), 1627. https://doi.org/10.3758/s13421-012-0238-9

    • Search Google Scholar
    • Export Citation
  • Zulkiply, N., & Burt, J. S. (2013b). Inductive learning: Does interleaving exemplars affect long-term retention? Malaysian Journal of Learning and Instruction, 10, 133155. https://eric.ed.gov/?id=EJ1137230

    • Search Google Scholar
    • Export Citation
  • Zulkiply, N., McLean, J., Burt, J. S., & Bath, D. (2012). Spacing and induction: Application to exemplars presented as auditory and visual text. Learning and Instruction, 22(3), 215221. https://doi.org/10.1016/j.learninstruc.2011.11.002

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1720 1720 684
Full Text Views 96 96 22
PDF Downloads 141 141 22
EPUB Downloads 0 0 0