How Students Understand Graphical Patterns: Fine-Grained, Intuitive Knowledge Used in Graphical Thinking

Author:
Jon-Marc G. Rodriguez University of Wisconsin–Milwaukee

Search for other papers by Jon-Marc G. Rodriguez in
Current site
Google Scholar
PubMed
Close
and
Steven R. Jones Brigham Young University

Search for other papers by Steven R. Jones in
Current site
Google Scholar
PubMed
Close

Engaging in the construction and interpretation of graphs is a complex process involving concerted activation of context-specific cognitive resources. As students engage in this process, they apply fine-grained, intuitive ideas to graphical patterns: graphical forms. Using data involving pairs of students constructing and interpreting graphs, we expand on the current knowledge base on graphical forms to contribute an empirically based catalog. We also situate our cognitively oriented work in relation to research that has emphasized (a) misconceptions and (b) social practices. In addition, we draw connections to the research on covariational reasoning. We end with implications regarding how graphical forms contribute to our understanding of students’ graphical reasoning and how instructors can support students.

Contributor Notes

Jon-Marc G. Rodriguez, Department of Chemistry & Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI 53211; rodrigjg@uwm.edu

Steven R. Jones, Department of Mathematics Education, Brigham Young University, Provo, UT 84602; sjones@mathed.byu.edu

  • Collapse
  • Expand
Journal for Research in Mathematics Education
  • Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem situations. Psychological Review, 94(2), 192210. https://doi.org/10.1037/0033-295X.94.2.192

    • Search Google Scholar
    • Export Citation
  • Aspinwall, L., Shaw, K. L., & Presmeg, N. C. (1997). Uncontrollable mental imagery: Graphical connections between a function and its derivative. Educational Studies in Mathematics, 33(3), 301317. https://doi.org/10.1023/A:1002976729261

    • Search Google Scholar
    • Export Citation
  • Balacheff, N., & Gaudin, N. (2002). Students conceptions: An introduction to a formal characterization. Les Cahiers de Laboratoire Leibniz, 65. https://shs.hal.science/hal-00001510/

    • Search Google Scholar
    • Export Citation
  • Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62(8), 750762. https://doi.org/10.1119/1.17449

    • Search Google Scholar
    • Export Citation
  • Bollen, L., De Cock, M., Zuza, K., Guisasola, J., & van Kampen, P. (2016). Generalizing a categorization of students’ interpretations of linear kinematics graphs. Physical Review Physics Education Research, 12(1), Article 010108. https://doi.org/10.1103/PhysRevPhysEducRes.12.010108

    • Search Google Scholar
    • Export Citation
  • Bowen, G. M., Roth, W.-M., & McGinn, M. K. (1999). Interpretations of graphs by university biology students and practicing scientists: Toward a social practice view of scientific representation practices. Journal of Research in Science Teaching, 36(9), 10201043. https://doi.org/10.1002/(SICI)1098-2736(199911)36:9%3C1020::AID-TEA4%3E3.0.CO;2-%23

    • Search Google Scholar
    • Export Citation
  • Campbell, J. L., Quincy, C., Osserman, J., & Pedersen, O. K. (2013). Coding in-depth semistructured interviews: Problems of unitization and intercoder reliability and agreement. Sociological Methods & Research, 42(3), 294320. https://doi.org/10.1177/0049124113500475

    • Search Google Scholar
    • Export Citation
  • Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352378. https://doi.org/10.2307/4149958

    • Search Google Scholar
    • Export Citation
  • Castillo-Garsow, C., Johnson, H. L., & Moore, K. C. (2013). Chunky and smooth images of change. For the Learning of Mathematics, 33(3), 3137. https://flm-journal.org/Articles/11A85FC0E320DF94C00F28F2595EAF.pdf

    • Search Google Scholar
    • Export Citation
  • Czarnocha, B., Dubinsky, E., Prabhu, V., & Vidakovic, D. (1999). One theoretical perspective in undergraduate mathematics education research. In O. Zaslavsky (Ed.), Proceedings of the 23rd conference of the International Group for the Psychology of Mathematics Education (pp. 95110). Israel Institute of Technology.

    • Search Google Scholar
    • Export Citation
  • delMas, R., Garfield, J., & Ooms, A. (2005). Using assessment items to study students’ difficulty reading and interpreting graphical representations of distributions. In K. Makar (Ed.), Proceedings of the fourth International Research Forum on Statistical Reasoning, Thinking and Literacy. University of Auckland. https://www.causeweb.org/cause/archive/artist/articles/SRTL4_ARTIST.pdf

    • Search Google Scholar
    • Export Citation
  • diSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.), Constructivism in the computer age (pp. 4970). Erlbaum.

    • Search Google Scholar
    • Export Citation
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3), 105225. https://doi.org/10.1080/07370008.1985.9649008

    • Search Google Scholar
    • Export Citation
  • diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 11551191. https://doi.org/10.1080/0950069980201002

    • Search Google Scholar
    • Export Citation
  • diSessa, A. A., Sherin, B. L., & Levin, M. (2016). Knowledge analysis: An introduction. In A. A. diSessa, M. Levin, & N. J. S. Brown (Eds.), Knowledge and interaction: A synthetic agenda for the learning sciences (pp. 3071). Routledge.

    • Search Google Scholar
    • Export Citation
  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Open University Press.

  • Dubinsky, E. (2001). Using a theory of learning in college mathematics courses. MSOR Connections, 1(2), 1015. https://doi.org/10.11120/msor.2001.01020010

    • Search Google Scholar
    • Export Citation
  • Elby, A. (2000). What students’ learning of representations tells us about constructivism. The Journal of Mathematical Behavior, 19(4), 481502. https://doi.org/10.1016/S0732-3123(01)00054-2

    • Search Google Scholar
    • Export Citation
  • Eshach, H. (2014). The use of intuitive rules in interpreting students’ difficulties in reading and creating kinematic graphs. Canadian Journal of Physics, 92(1), 18. https://doi.org/10.1139/cjp-2013-0369

    • Search Google Scholar
    • Export Citation
  • Glazer, N. (2011). Challenges with graph interpretation: A review of the literature. Studies in Science Education, 47(2), 183210. https://doi.org/10.1080/03057267.2011.605307

    • Search Google Scholar
    • Export Citation
  • Goldin, G. A. (1997). Observing mathematical problem solving through task-based interviews. In A. R. Teppo (Ed.), Qualitative research methods in mathematics education (pp. 4062). National Council of Teachers of Mathematics. https://doi.org/10.2307/749946

    • Search Google Scholar
    • Export Citation
  • Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, 68(S1), S52S59. https://doi.org/10.1119/1.19520

    • Search Google Scholar
    • Export Citation
  • Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. Journal of the Learning Sciences, 12(1), 5390. https://doi.org/10.1207/S15327809JLS1201_3

    • Search Google Scholar
    • Export Citation
  • Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89119). Information Age.

    • Search Google Scholar
    • Export Citation
  • Ivanjek, L., Susac, A., Planinic, M., Andrasevic, A., & Milin-Sipus, Z. (2016). Student reasoning about graphs in different contexts. Physical Review Physics Education Research, 12(1), Article 010106. https://doi.org/10.1103/PhysRevPhysEducRes.12.010106

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L. (2015). Together yet separate: Students’ associating amounts of change in quantities involved in rate of change. Educational Studies in Mathematics, 89(1), 89110. https://doi.org/10.1007/s10649-014-9590-y

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., McClintock, E., & Hornbein, P. (2017). Ferris wheels and filling bottles: A case of a student’s transfer of covariational reasoning across tasks with different backgrounds and features. ZDM, 49(6), 851864. https://doi.org/10.1007/s11858-017-0866-4

    • Search Google Scholar
    • Export Citation
  • Jones, S. R. (2017). An exploratory study on student understandings of derivatives in real-world, non-kinematics contexts. The Journal of Mathematical Behavior, 45, 95110. https://doi.org/10.1016/j.jmathb.2016.11.002

    • Search Google Scholar
    • Export Citation
  • Kosslyn, S. M. (1989). Understanding charts and graphs. Applied Cognitive Psychology, 3(3), 185225. https://doi.org/10.1002/acp.2350030302

    • Search Google Scholar
    • Export Citation
  • Kouropatov, A., & Dreyfus, T. (2014). Learning the integral concept by constructing knowledge about accumulation. ZDM, 46(4), 533548. https://doi.org/10.1007/s11858-014-0571-5

    • Search Google Scholar
    • Export Citation
  • Lee, V., & Sherin, B. (2006). Beyond transparency: How students make representations meaningful. In S. A. Barab, K. E. Hay, & D. T. Hickey (Eds.), Proceedings of the seventh International Conference of the Learning Sciences (pp. 397403). International Society of the Learning Sciences.

    • Search Google Scholar
    • Export Citation
  • Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 164. https://doi.org/10.3102/00346543060001001

    • Search Google Scholar
    • Export Citation
  • Madsen, A. M., Larson, A. M., Loschky, L. C., & Rebello, N. S. (2012). Differences in visual attention between those who correctly and incorrectly answer physics problems. Physical Review Physics Education Research, 8(1), Article 010122. https://doi.org/10.1103/PhysRevSTPER.8.010122

    • Search Google Scholar
    • Export Citation
  • McCloskey, M. (1983). Naive theories of motion. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 299323). Psychology Press.

  • McDermott, L. C., Rosenquist, M. L., & van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503513. https://doi.org/10.1119/1.15104

    • Search Google Scholar
    • Export Citation
  • Mevarech, Z. R., & Kramarsky, B. (1997). From verbal descriptions to graphic representations: Stability and change in students’ alternative conceptions. Educational Studies in Mathematics, 32(3), 229263. https://doi.org/10.1023/A:1002965907987

    • Search Google Scholar
    • Export Citation
  • Minstrell, J. A. (1989). Teaching science for understanding. In L. B. Resnick & L. E. Klopfer (Eds.), Toward the thinking curriculum: Current cognitive research (pp. 129149). Association for Supervision and Curriculum Design.

    • Search Google Scholar
    • Export Citation
  • Moore, K. C. (2016). Graphing as figurative and operative thought. In C. Csíkos, A. Rausch, & J. Szitányi (Eds.), Proceedings of the 40th conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 323330). PME.

    • Search Google Scholar
    • Export Citation
  • Moore, K. C., Paoletti, T., & Musgrave, S. (2013). Covariational reasoning and invariance among coordinate systems. The Journal of Mathematical Behavior, 32(3), 461473. https://doi.org/10.1016/j.jmathb.2013.05.002

    • Search Google Scholar
    • Export Citation
  • Moore, K. C., Paoletti, T., & Musgrave, S. (2014). Complexities in students’ construction of the polar coordinate system. The Journal of Mathematical Behavior, 36, 135149. https://doi.org/10.1016/j.jmathb.2014.10.001

    • Search Google Scholar
    • Export Citation
  • Moore, K. C., Silverman, J., Paoletti, T., Liss, D., & Musgrave, S. (2019). Conventions, habits, and U.S. teachers’ meanings for graphs. The Journal of Mathematical Behavior, 53, 179195. https://doi.org/10.1016/j.jmathb.2018.08.002

    • Search Google Scholar
    • Export Citation
  • Moore, K., & Thompson, P. (2015). Shape thinking and students’ graphing activity. In T. Fukawa-Connelly, N. E. Infante, K. Keene, & M. Zandieh (Eds.), Proceedings of the 18th annual Conference on Research in Undergraduate Mathematics Education (pp. 782789). SIGMAA on RUME.

    • Search Google Scholar
    • Export Citation
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. https://www.nctm.org/standards/

  • National Research Council. (2000). Grading the nation’s report card: Research from the evaluation of NAEP. National Academies Press. https://doi.org/10.17226/9751

    • Search Google Scholar
    • Export Citation
  • National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press. https://doi.org/10.17226/13165

    • Search Google Scholar
    • Export Citation
  • National Weather Service. (2022, February 22). Layers of the atmosphere. https://www.noaa.gov/jetstream/atmosphere/layers-of-atmosphere

  • Nemirovsky, R. (1996). Mathematical narratives, modeling, and algebra. In N. Bednarz, C. Kiernan, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 197220). Kluwer. https://doi.org/10.1007/978-94-009-1732-3_15

    • Search Google Scholar
    • Export Citation
  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers. Kluwer. https://doi.org/10.1007/978-94-009-1696-8

    • Search Google Scholar
    • Export Citation
  • Oehrtman, M., Carlson, M., & Thompson, P. (2008). Foundational reasoning abilities that promote coherence in students’ function understanding. In M. P. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics education (pp. 2742). Mathematical Association of America. https://doi.org/10.5948/UPO9780883859759.004

    • Search Google Scholar
    • Export Citation
  • Olive, J., & Steffe, L. P. (2001). The construction of an iterative fractional scheme: The case of Joe. The Journal of Mathematical Behavior, 20(4), 413437. https://doi.org/10.1016/S0732-3123(02)00086-X

    • Search Google Scholar
    • Export Citation
  • Paoletti, T., & Moore, K. C. (2017). The parametric nature of two students’ covariational reasoning. The Journal of Mathematical Behavior, 48, 137151. https://doi.org/10.1016/j.jmathb.2017.08.003

    • Search Google Scholar
    • Export Citation
  • Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Sage.

  • Planinic, M., Ivanjek, L., Susac, A., & Milin-Sipus, Z. (2013). Comparison of university students’ understanding of graphs in different contexts. Physical Review Physics Education Research, 9(2), Article 020103. https://doi.org/10.1103/PhysRevSTPER.9.020103

    • Search Google Scholar
    • Export Citation
  • Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., & Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10(6), 13931414. https://doi.org/10.1007/s10763-012-9344-1

    • Search Google Scholar
    • Export Citation
  • Popova, M., & Bretz, S. L. (2018). Organic chemistry students’ interpretations of the surface features of reaction coordinate diagrams. Chemistry Education Research and Practice, 19(3), 919931. https://doi.org/10.1039/C8RP00063H

    • Search Google Scholar
    • Export Citation
  • Potgieter, M., Harding, A., & Engelbrecht, J. (2008). Transfer of algebraic and graphical thinking between mathematics and chemistry. Journal of Research in Science Teaching, 45(2), 197218. https://doi.org/10.1002/tea.20208

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J.-M. G., Bain, K., & Towns, M. H. (2019). Graphs as objects: Mathematical resources used by undergraduate biochemistry students to reason about enzyme kinetics. In M. H. Towns, K. Bain, & J.-M. G. Rodriguez (Eds.), It’s just math: Research on students’ understanding of chemistry and mathematics (pp. 6980). American Chemical Society. https://doi.org/10.1021/bk-2019-1316.ch005

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J.-M. G., Bain, K., & Towns, M. H. (2020). Graphical forms: The adaptation of Sherin’s symbolic forms for the analysis of graphical reasoning across disciplines. International Journal of Science and Mathematics Education, 18(8), 15471563. https://doi.org/10.1007/s10763-019-10025-0

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J.-M. G., Bain, K., Towns, M. H., Elmgren, M., & Ho, F. M. (2019). Covariational reasoning and mathematical narratives: Investigating students’ understanding of graphs in chemical kinetics. Chemistry Education Research and Practice, 20(1), 107119. https://doi.org/10.1039/C8RP00156A

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J.-M. G., Harrison, A. R., & Becker, N. M. (2020). Analyzing students’ construction of graphical models: How does reaction rate change over time? Journal of Chemical Education, 97(11), 39483956. https://doi.org/10.1021/acs.jchemed.0c01036

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J.-M. G., Hux, N. P., Philips, S. J., & Towns, M. H. (2019). Michaelis–Menten graphs, Lineweaver–Burk plots, and reaction schemes: Investigating introductory biochemistry students’ conceptions of representations in enzyme kinetics. Journal of Chemical Education, 96(9), 18331845. https://doi.org/10.1021/acs.jchemed.9b00396

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J.-M. G., Santos-Diaz, S., Bain, K., & Towns, M. H. (2018). Using symbolic and graphical forms to analyze students’ mathematical reasoning in chemical kinetics. Journal of Chemical Education, 95(12), 21142125. https://doi.org/10.1021/acs.jchemed.8b00584

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J.-M. G., Stricker, A. R., & Becker, N. M. (2020a). Exploring the productive use of metonymy: Applying coordination class theory to investigate student conceptions of rate in relation to reaction coordinate diagrams. Journal of Chemical Education, 97(8), 20652077. https://doi.org/10.1021/acs.jchemed.0c00496

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J.-M. G., Stricker, A. R., & Becker, N. M. (2020b). Students’ interpretation and use of graphical representations: Insights afforded by modeling the varied population schema as a coordination class. Chemistry Education Research and Practice, 21(2), 536560. https://doi.org/10.1039/C9RP00249A

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J.-M. G., & Towns, M. H. (2021). Analysis of biochemistry students’ graphical reasoning using misconceptions constructivism and fine-grained constructivism: Why assumptions about the nature and structure of knowledge matter for research and teaching. Chemistry Education Research and Practice, 22(4), 10201034. https://doi.org/10.1039/D1RP00041A

    • Search Google Scholar
    • Export Citation
  • Roschelle, J. (1991). Students’ construction of qualitative physics knowledge: Learning about velocity and acceleration in a computer microworld (Publication No. 9203700) [Doctoral dissertation, University of California–Berkley]. ProQuest Dissertations and Theses Global.

  • Roth, W.-M. (2002). Reading graphs: Contributions to an integrative concept of literacy. Journal of Curriculum Studies, 34(1), 124. https://doi.org/10.1080/00220270110068885

    • Search Google Scholar
    • Export Citation
  • Roth, W.-M., & Bowen, G. M. (2001). Professionals read graphs: A semiotic analysis. Journal for Research in Mathematics Education, 32(2), 159194. https://doi.org/10.2307/749672

    • Search Google Scholar
    • Export Citation
  • Roth, W.-M., & Bowen, G. M. (2003). When are graphs worth ten thousand words?: An expert-expert study. Cognition and Instruction, 21(4), 429473. https://doi.org/10.1207/s1532690xci2104_3

    • Search Google Scholar
    • Export Citation
  • Roth, W.-M., Bowen, G. M., & McGinn, M. K. (1999). Differences in graph-related practices between high school biology textbooks and scientific ecology journals. Journal of Research in Science Teaching, 36(9), 9771019. https://doi.org/10.1002/(SICI)1098-2736(199911)36:9%3C977::AID-TEA3%3E3.0.CO;2-V

    • Search Google Scholar
    • Export Citation
  • Roth, W.-M., & Lee, Y. J. (2004). Interpreting unfamiliar graphs: A generative, activity theoretic model. Educational Studies in Mathematics, 57(2), 265290. https://doi.org/10.1023/B:EDUC.0000049276.37088.e4

    • Search Google Scholar
    • Export Citation
  • Saunders, B., Sim, J., Kingstone, T., Baker, S., Waterfield, J., Bartlam, B., Burroughs, H., & Jinks, C. (2018). Saturation in qualitative research: Exploring its conceptualization and operationalization. Quality & Quantity, 52(4), 18931907. https://doi.org/10.1007/s11135-017-0574-8

    • Search Google Scholar
    • Export Citation
  • Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. Issues in Education, 4(1), 194. https://doi.org/10.1016/S1080-9724(99)80076-7

    • Search Google Scholar
    • Export Citation
  • Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications for instruction. Educational Psychology Review, 14(1), 4769. https://doi.org/10.1023/A:1013180410169

    • Search Google Scholar
    • Export Citation
  • Sherin, B. L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479541. https://doi.org/10.1207/S1532690XCI1904_3

    • Search Google Scholar
    • Export Citation
  • Sierpińska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics, 18(4), 371397. https://doi.org/10.1007/BF00240986

    • Search Google Scholar
    • Export Citation
  • Smith, J. P., III, diSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115163. https://doi.org/10.1207/s15327809jls0302_1

    • Search Google Scholar
    • Export Citation
  • Stewart, J., Clegg, D. K., & Watson, S. (2021). Single variable calculus: Early transcendentals (9th ed.). Cengage.

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151169. https://doi.org/10.1007/BF00305619

    • Search Google Scholar
    • Export Citation
  • Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 421456). National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • Zimmerman, C., Olsho, A., Loverude, M., & White Brahmia, S. (2020). Identifying covariational reasoning behaviors in expert physicists in graphing tasks. In S. S. Karunakaran, Z. Reed, & A. Higgins (Eds.), Proceedings of the 23rd annual Conference on Research in Undergraduate Mathematics Education (pp. 985990). SIGMAA on RUME.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 8769 8769 51
Full Text Views 403 403 18
PDF Downloads 563 563 27
EPUB Downloads 0 0 0