Spatial Reasoning Supports Preschool Numeracy: Findings From a Large-Scale Nationally Representative Randomized Control Trial

Author:
Ilyse Resnick University of Canberra

Search for other papers by Ilyse Resnick in
Current site
Google Scholar
PubMed
Close
and
Tom Lowrie University of Canberra

Search for other papers by Tom Lowrie in
Current site
Google Scholar
PubMed
Close

We assessed the efficacy of two spatial learning programs grounded in early years learning pedagogical theory to improve numeracy performance in preschool. Engagement with a play-based spatial program led to better overall spatial reasoning and transferred to better numeracy compared with a business-as-usual control, underscoring the importance of embedding spatial learning within strong pedagogy and authentic preschool contexts. Engagement with the same spatial program using a spatialized curriculum (e.g., gesture, sketching) showed large additive effects, highlighting the role of spatial reasoning tools to support transfer of spatial reasoning to numeracy. The effects of the two interventions were moderated by spatial reasoning, with children with lower spatial reasoning making the most gains in numeracy.

Footnotes

The guest editor for this article was Douglas Clements.

Contributor Notes

Ilyse Resnick, STEM Education Research Centre, University of Canberra, Bruce, ACT, Australia, 2617; ilyse.resnick@canberra.edu.au

Tom Lowrie, STEM Education Research Centre, University of Canberra, Bruce, ACT, Australia, 2617; thomas.lowrie@canberra.edu.au

  • Collapse
  • Expand
Journal for Research in Mathematics Education
  • Adams, J., Resnick, I., & Lowrie, T. (2022). Supporting senior high-school students’ measurement and geometry performance: Does spatial training transfer to mathematics achievement? Mathematics Education Research Journal. Advance online publication. https://doi.org/10.1007/s13394-022-00416-y

    • Search Google Scholar
    • Export Citation
  • Banyai, I. (1995). Zoom. Viking.

  • Beilock, S. L., & Goldin-Meadow, S. (2010). Gesture changes thought by grounding it in action. Psychological Science, 21(11), 16051610. https://doi.org/10.1177/0956797610385353

    • Search Google Scholar
    • Export Citation
  • Bower, C. A., Foster, L., Zimmermann, L., Verdine, B. N., Marzouk, M., Islam, S., Golinkoff, R. M., & Hirsh-Pasek, K. (2020). Three-year-olds’ spatial language comprehension and links with mathematics and spatial performance. Developmental Psychology, 56(10), 18941905. https://doi.org/10.1037/dev0001098

    • Search Google Scholar
    • Export Citation
  • Bruner, J. S. (1966). Toward a theory of instruction. Belknap Press.

  • Casey, B. M., & Fell, H. (2018). Spatial reasoning: A critical problem-solving tool in children’s mathematics strategy tool-kit. In K. S. Mix & M. T. Battista (Eds.), Visualizing mathematics: The role of spatial reasoning in mathematical thought (pp. 4775). Springer. https://doi.org/10.1007/978-3-319-98767-5_3

    • Search Google Scholar
    • Export Citation
  • Casey, B. M., Nuttall, R. L., & Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 32(1), 2857. https://doi.org/10.2307/749620

    • Search Google Scholar
    • Export Citation
  • Clarkson, P., & Presmeg, N. (Eds.). (2008). Critical issues in mathematics education: Major contributions of Alan Bishop. Springer. https://doi.org/10.1007/978-0-387-09673-5

    • Search Google Scholar
    • Export Citation
  • Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420464). National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. Routledge. https://doi.org/10.4324/9780203883389

    • Search Google Scholar
    • Export Citation
  • Clements, D. H., Sarama, J. H., & Liu, X. H. (2008). Development of a measure of early mathematics achievement using the Rasch model: The Research-Based Early Maths Assessment. Educational Psychology, 28(4), 457482. https://doi.org/10.1080/01443410701777272

    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587

  • Cornu, V., Schiltz, C., Pazouki, T., & Martin, R. (2019). Training early visuo-spatial abilities: A controlled classroom-based intervention study. Applied Developmental Science, 23(1), 121. https://doi.org/10.1080/10888691.2016.1276835

    • Search Google Scholar
    • Export Citation
  • Cronbach L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297334. https://doi.org/10.1007/BF02310555

    • Search Google Scholar
    • Export Citation
  • Cullen, A. L., Eames, C. L., Cullen, C. J., Barrett, J. E., Sarama, J., Clements, D. H., & Van Dine, D. W. (2018). Effects of three interventions on children’s spatial structuring and coordination of area units. Journal for Research in Mathematics Education, 49(5), 533574. https://doi.org/10.5951/jresematheduc.49.5.0533

    • Search Google Scholar
    • Export Citation
  • David, L. T. (2012). Training effects on mental rotation, spatial orientation and spatial visualisation depending on the initial level of spatial abilities. Procedia–Social and Behavioral Sciences, 33, 328332. https://doi.org/10.1016/j.sbspro.2012.01.137

    • Search Google Scholar
    • Export Citation
  • Davis, B., & Spatial Reasoning Study Group. (2015). Spatial reasoning in the early years: Principles, assertions, and speculations. Routledge. https://doi.org/10.4324/9781315762371

    • Search Google Scholar
    • Export Citation
  • de Freitas, E., & Sinclair, N. (2012). Diagram, gesture, agency: Theorizing embodiment in the mathematics classroom. Educational Studies in Mathematics, 80(1–2), 133152. https://doi.org/10.1007/s10649-011-9364-8

    • Search Google Scholar
    • Export Citation
  • Department of Education, Employment and Workplace Relations. (2009). Belonging, being and becoming: The early years learning framework for Australia. Commonwealth of Australia. https://www.acecqa.gov.au/media/24251

    • Search Google Scholar
    • Export Citation
  • Edwards, S., & Bird, J. (2017). Observing and assessing young children’s digital play in the early years: Using the Digital Play Framework. Journal of Early Childhood Research, 15(2), 158173. https://doi.org/10.1177/1476718X15579746

    • Search Google Scholar
    • Export Citation
  • Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods, 12(2), 121138. https://doi.org/10.1037/1082-989X.12.2.121

    • Search Google Scholar
    • Export Citation
  • Frick, A., Möhring, W., & Newcombe, N. S. (2014). Picturing perspectives: Development of perspective-taking abilities in 4- to 8-year-olds. Frontiers in Psychology, 5, Article 386. https://doi.org/10.3389/fpsyg.2014.00386

    • Search Google Scholar
    • Export Citation
  • Galton, F. (1883). Inquiries into human faculty and its development. MacMillan. https://doi.org/10.1037/14178-000

  • Gershon, R. C., Slotkin, J., Manly, J. J., Blitz, D. L., Beaumont, J. L., Schnipke, D., Wallner-Allen, K., Golinkoff, R. M., Gleason, J. B., Hirsh-Pasek, K., Adams, M. J., & Weintraub, S. (2013). Measuring language (vocabulary comprehension and reading decoding). In P. D. Zelazo & P. J. Bauer (Eds.), National Institutes of Health Toolbox Cognition Battery (NIH Toolbox CB): Validation for children between 3 and 15 years (pp. 4969). Society for Research in Child Development. https://doi.org/10.1111/mono.12034

    • Search Google Scholar
    • Export Citation
  • Gilligan-Lee, K. A., Hodgkiss, A., Thomas, M. S. C., Patel, P. K., & Farran, E. K. (2021). Aged-based differences in spatial language skills from 6 to 10 years: Relations with spatial and mathematics skills. Learning and Instruction, 73, Article 101417. https://doi.org/10.1016/j.learninstruc.2020.101417

    • Search Google Scholar
    • Export Citation
  • Ginsburg, H. P., & Baroody, A. J. (2003). TEMA-3 examiner’s manual. PRO-ED.

  • Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001), Explaining math: Gesturing lightens the load. Psychological Science, 12(6), 516522. https://doi.org/10.1111/1467-9280.00395

    • Search Google Scholar
    • Export Citation
  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2013). Teachers’ spatial anxiety relates to 1st- and 2nd-graders’ spatial learning. Mind, Brain, and Education, 7(3), 196199. https://doi.org/10.1111/mbe.12027

    • Search Google Scholar
    • Export Citation
  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 12291241. https://doi.org/10.1037/a0027433

    • Search Google Scholar
    • Export Citation
  • Harris, D., Logan, T., & Lowrie, T. (2021). Unpacking mathematical-spatial relations: Problem-solving in static and interactive tasks. Mathematics Education Research Journal, 33(3), 495511. https://doi.org/10.1007/s13394-020-00316-z

    • Search Google Scholar
    • Export Citation
  • Hawes, Z. C. K., Gilligan-Lee, K. A., & Mix, K. S. (2022). Effects of spatial training on mathematics performance: A meta-analysis. Developmental Psychology, 58(1), 112137. https://doi.org/10.1037/dev0001281

    • Search Google Scholar
    • Export Citation
  • Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408-420. https://doi.org/10.1080/03637750903310360

    • Search Google Scholar
    • Export Citation
  • Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed.). Guilford.

    • Search Google Scholar
    • Export Citation
  • Herman, K. C., Reinke, W. M., Dong, N., & Bradshaw, C. P. (2022). Can effective classroom behavior management increase student achievement in middle school?: Findings from a group randomized trial. Journal of Educational Psychology, 114(1), 144160. https://doi.org/10.1037/edu0000641

    • Search Google Scholar
    • Export Citation
  • Ishikawa, T., & Newcombe, N. S. (2021). Why spatial is special in education, learning, and everyday activities. Cognitive Research: Principles and Implications, 6, Article 20. https://doi.org/10.1186/s41235-021-00274-5

    • Search Google Scholar
    • Export Citation
  • Jordan, N. C., Kaplan, D., Locuniak, M. N., & Ramineni, C. (2007). Predicting first-grade math achievement from developmental number sense trajectories. Learning Disabilities Research & Practice, 22(1), 3646. https://doi.org/10.1111/j.1540-5826.2007.00229.x

    • Search Google Scholar
    • Export Citation
  • Kidd, J. K., Pasnak, R., Gadzichowski, M., Ferral-Like, M., & Gallington, D. (2008). Enhancing early numeracy by promoting the abstract thought involved in the oddity principle, seriation, and conservation. Journal of Advanced Academics, 19(2), 164200. https://doi.org/10.4219/jaa-2008-780

    • Search Google Scholar
    • Export Citation
  • King, Y. A., & Purpura, D. J. (2021). Direct numeracy activities and early math skills: Math language as a mediator. Early Childhood Research Quarterly, 54(1), 252259. https://doi.org/10.1016/j.ecresq.2020.09.012

    • Search Google Scholar
    • Export Citation
  • Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83(404), 11981202. https://doi.org/10.1080/01621459.1988.10478722

    • Search Google Scholar
    • Export Citation
  • Lombardi, M. M. (2007). Authentic learning for the 21st century: An overview (ELI Paper 1). Educause Learning Initiative. https://library.educause.edu/resources/2007/1/authentic-learning-for-the-21st-century-an-overview

    • Search Google Scholar
    • Export Citation
  • Lourenco, S. F., Cheung, C.-N., & Aulet, L. S. (2018). Is visuospatial reasoning related to early mathematical development?: A critical review. In A. Henik & W. Fias (Eds.), Heterogeneity of function in numerical cognition (pp. 177210). https://doi.org/10.1016/B978-0-12-811529-9.00010-8

    • Search Google Scholar
    • Export Citation
  • Lowrie, T. (2021, February 16). Contemplating goals and strategies of prekindergarten programs across nations and programs [Commentary]. Monograph Matters. https://monographmatters.srcd.org/2021/02/16/commentary-lowrie-86-1/

    • Search Google Scholar
    • Export Citation
  • Lowrie, T., & Larkin, K. (2020). Experience, represent, apply (ERA): A heuristic for digital engagement in the early years. British Journal of Educational Technology, 51(1), 131147. https://doi.org/10.1111/bjet.12789

    • Search Google Scholar
    • Export Citation
  • Lowrie, T., & Logan, T. (2019). Early Learning STEM Australia (ELSA): The policy and practice(s) of engagement in the early years. In G. Hine, S. Blackley, & A. Cooke (Eds.), Proceedings of the 42nd annual conference of the Mathematics Education Research Group of Australasia(pp. 7376). MERGA.

    • Search Google Scholar
    • Export Citation
  • Lowrie, T., Logan, T., Harris, D., & Hegarty, M. (2018). The impact of an intervention program on students’ spatial reasoning: Student engagement through mathematics-enhanced learning activities. Cognitive Research: Principles and Implications, 3, Article 50. https://doi.org/10.1186/s41235-018-0147-y

    • Search Google Scholar
    • Export Citation
  • Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. Journal of Cognition and Development, 20(5), 729751. https://doi.org/10.1080/15248372.2019.1653298

    • Search Google Scholar
    • Export Citation
  • Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344351. https://doi.org/10.1016/j.paid.2010.03.022

    • Search Google Scholar
    • Export Citation
  • Mix, K. S., Levine, S. C., Cheng, Y.-L., Stockton, J. D., & Bower, C. (2021). Effects of spatial training on mathematics in first and sixth grade children. Journal of Educational Psychology, 113(2), 304314. https://doi.org/10.1037/edu0000494

    • Search Google Scholar
    • Export Citation
  • Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 12061227. https://doi.org/10.1037/xge0000182

    • Search Google Scholar
    • Export Citation
  • Moulton, L. H. (2004). Covariate-based constrained randomization of group-randomized trials. Clinical Trials, 1(3), 297305. https://doi.org/10.1191/1740774504cn024oa

    • Search Google Scholar
    • Export Citation
  • Mulligan, J. (2015). Looking within and beyond the geometry curriculum: Connecting spatial reasoning to mathematics learning. ZDM, 47(3), 511517. https://doi.org/10.1007/s11858-015-0696-1

    • Search Google Scholar
    • Export Citation
  • Mulligan, J., Mitchelmore, M. C., & Prescott, A. (2006). Integrating concepts and processes in early mathematics: The Australian Pattern and Structure Mathematics Awareness Project (PASMAP). In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 209216). PME.

    • Search Google Scholar
    • Export Citation
  • National Council of Teachers of Mathematics. (2006). Principles and standards for school mathematics. https://www.nctm.org/Standards-and-Positions/Principles-and-Standards/

    • Search Google Scholar
    • Export Citation
  • National Research Council. (2006). Learning to think spatially. National Academies Press. https://doi.org/10.17226/11019

  • Nesbitt, K. T., & Farran, D. C. (2021). Effects of prekindergarten curricula: Tools of the Mind as a case study. Monographs of the Society for Research in Child Development, 86(1), 7119. https://doi.org/10.1111/mono.12425

    • Search Google Scholar
    • Export Citation
  • Newcombe, N. (2017). Harnessing spatial thinking to support STEM learning (OECD Education Working Paper No. 161). Organisation for Economic Cooperation and Development. https://doi.org/10.1787/7d5dcae6-en

    • Search Google Scholar
    • Export Citation
  • Newcombe, N. S. (2013). Seeing relationships: Using spatial thinking to teach science, mathematics, and social studies. American Educator, 37(1), 2631. http://files.eric.ed.gov/fulltext/EJ1006210.pdf

    • Search Google Scholar
    • Export Citation
  • Newcombe, N. S., Booth, J. L., & Gunderson, E. A. (2019). Spatial skills, reasoning, and mathematics. In J. Dunlosky & K. A. Rawson (Eds.), The Cambridge handbook of cognition and education (pp. 100123). Cambridge University Press. https://doi.org/10.1017/9781108235631.006

    • Search Google Scholar
    • Export Citation
  • Paccagnella, O. (2006). Centering or not centering in multilevel models? The role of the group mean and the assessment of group effects. Evaluation Review, 30(1), 6685. https://doi.org/10.1177/0193841X05275649

    • Search Google Scholar
    • Export Citation
  • Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237268. https://doi.org/10.5951/jresematheduc.42.3.0237

    • Search Google Scholar
    • Export Citation
  • Piaget, J. (1971). Psychology and epistemology: Towards a theory of knowledge. Grossman.

  • Piaget, J., & Inhelder, B. (1956). The child’s conception of space (Trans. F. J. Langdon & J. L. Lunzer). Routledge.

  • Purpura, D. J., Reid, E. E., Eiland, M. D., & Baroody, A. J. (2015). Using a brief preschool early numeracy skills screener to identify young children with mathematics difficulties. School Psychology Review, 44(1), 4159. https://doi.org/10.17105/SPR44-1.41-59

    • Search Google Scholar
    • Export Citation
  • Ramful, A., Lowrie, T., & Logan, T. (2016). Measurement of spatial ability: Construction and validation of the Spatial Reasoning Instrument for middle school students. Journal of Psychoeducational Assessment, 35(7), 709727. https://doi.org/10.1177/0734282916659207

    • Search Google Scholar
    • Export Citation
  • Resnick, I., Harris, D., Logan, T., & Lowrie, T. (2020). The relation between mathematics achievement and spatial reasoning. Mathematics Education Research Journal, 32(2), 171174. https://doi.org/10.1007/s13394-020-00338-7

    • Search Google Scholar
    • Export Citation
  • Resnick, I., Levido, A., Adams, J., & Lowrie, T. (2022, February 10–11). Capturing understanding in early childhood using play-based digital games [paper presentation]. Australasian Journal of Early Childhood Research Symposium.

    • Search Google Scholar
    • Export Citation
  • Resnick, I., Levido, A., & Logan, T. (2022). Effects of professional learning on preschool educators’ confidence teaching and leadership in STEM. In J. Bobis & C. Preston (Eds.), Proceedings of the seventh International STEM in Education Conference. University of Sydney.

    • Search Google Scholar
    • Export Citation
  • Resnick, I., Newcombe N. S., Jordan N. C. (2019). The relation between spatial reasoning and mathematical achievement in children with mathematical learning difficulties. In A. Fritz, V. G. Haase, & P. Räsänen (Eds.), International handbook of mathematical learning difficulties: From the laboratory to the classroom (pp. 423435). Springer. https://doi.org/10.1007/978-3-319-97148-3_26

    • Search Google Scholar
    • Export Citation
  • Rittle-Johnson, B., Fyfe, E. R., McLean, L. E., & McEldoon, K. L. (2013). Emerging understanding of patterning in 4-year-olds. Journal of Cognition and Development, 14(3), 376396. https://doi.org/10.1080/15248372.2012.689897

    • Search Google Scholar
    • Export Citation
  • Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Wiley. https://doi.org/10.1002/9780470316696

  • Schmitt, S. A., Korucu, I., Napoli, A. R., Bryant, L. M., & Purpura, D. J. (2018). Using block play to enhance preschool children’s mathematics and executive functioning: A randomized controlled trial. Early Childhood Research Quarterly, 44(3), 181191. https://doi.org/10.1016/j.ecresq.2018.04.006

    • Search Google Scholar
    • Export Citation
  • Schrank, F. A., McGrew, K. S., Mather, N. (2014). Woodcock-Johnson IV tests of cognitive abilities. Riverside.

  • Sinclair, N., & Bruce, C. D. (2014). Spatial reasoning for young learners [Research forum]. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the 38th conference of the International Group for the Psychology of Mathematics Education and the 36th conference of the North American Chapter of the Psychology of Mathematics Education (Vol. 1, pp. 173203). PME.

    • Search Google Scholar
    • Export Citation
  • Skene, K., O’Farrelly, C. M., Byrne, E. M., Kirby, N., Stevens, E. C., & Ramchandani, P. G. (2022). Can guidance during play enhance children’s learning and development in educational contexts?: A systematic review and meta-analysis. Child Development, 93(4), 11621180. https://doi.org/10.1111/cdev.13730

    • Search Google Scholar
    • Export Citation
  • Starkey, P., Klein, A., & Wakeley, A. (2004). Enhancing young children’s mathematical knowledge through a pre-kindergarten mathematics intervention. Early Childhood Research Quarterly, 19(1), 99120. https://doi.org/10.1016/j.ecresq.2004.01.002

    • Search Google Scholar
    • Export Citation
  • Tam, Y. P., & Chan, W. W. L. (2022). The differential relations between sub-domains of spatial abilities and mathematical performance in children. Contemporary Educational Psychology, 71, Article 102101. https://doi.org/10.1016/j.cedpsych.2022.102101

    • Search Google Scholar
    • Export Citation
  • Taylor, H. A., & Hutton, A. (2013). Think3d!: Training spatial thinking fundamental to STEM education. Cognition and Instruction, 31(4), 434455. https://doi.org/10.1080/07370008.2013.828727

    • Search Google Scholar
    • Export Citation
  • U. S. Department of Education. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. http://files.eric.ed.gov/fulltext/ED500486.pdf

    • Search Google Scholar
    • Export Citation
  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352402. https://doi.org/10.1037/a0028446

    • Search Google Scholar
    • Export Citation
  • van den Heuvel-Panhuizen, M., Elia, I., & Robitzsch, A. (2015). Kindergartners’ performance in two types of imaginary perspective‑taking. ZDM, 47(3), 345362. https://doi.org/10.1007/s11858-015-0677-4

    • Search Google Scholar
    • Export Citation
  • Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2017). Links between spatial and mathematical skills across the preschool years. Monographs of the Society for Research in Child Development, 82(1), 1150. https://doi.org/10.1111/mono.v82.1

    • Search Google Scholar
    • Export Citation
  • Weckbacher, L. M., & Okamoto, Y. (2014). Mental rotation ability in relation to self-perceptions of high school geometry. Learning and Individual Differences, 30, 5863. https://doi.org/10.1016/j.lindif.2013.10.007

    • Search Google Scholar
    • Export Citation
  • What Works Clearinghouse. (2019). Standards handbook (Ver. 4.0). U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance. https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_standards_handbook_v4.pdf

    • Search Google Scholar
    • Export Citation
  • Woolcott, G., Le Tran, T., Mulligan, J., Davis, B., & Mitchelmore, M. (2022). Towards a framework for spatial reasoning and primary mathematics learning: An analytical synthesis of intervention studies. Mathematics Education Research Journal, 34(1), 3767. https://doi.org/10.1007/s13394-020-00318-x

    • Search Google Scholar
    • Export Citation
  • Xu, C., & LeFevre, J.-A. (2016). Training young children on sequential relations among numbers and spatial decomposition: Differential transfer to number line and mental transformation tasks. Developmental Psychology, 52(6), 854866. https://doi.org/10.1037/dev0000124

    • Search Google Scholar
    • Export Citation
  • Zippert, E. L., Douglas, A.-A., & Rittle-Johnson, B. (2020). Finding patterns in objects and numbers: Repeating patterning in pre-K predicts kindergarten mathematics knowledge. Journal of Experimental Child Psychology, 200, Article 104965. https://doi.org/10.1016/j.jecp.2020.104965

    • Search Google Scholar
    • Export Citation
  • Zosh, J. M., Hirsh-Pasek, K., Hopkins, E. J., Jensen, H., Liu, C., Neale, D., Solis, S. L., & Whitebread, D. (2018). Accessing the inaccessible: Redefining play as a spectrum. Frontiers in Psychology, 9, Article 1124. https://doi.org/10.3389/fpsyg.2018.01124

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1945 1945 532
Full Text Views 254 254 34
PDF Downloads 266 266 44
EPUB Downloads 0 0 0