From (and for) the Invisible 10%: Including Students With Learning Disabilities in Problem-Based Instruction

Author:
Juanita M. Silva Texas State University, San Marcos

Search for other papers by Juanita M. Silva in
Current site
Google Scholar
PubMed
Close
,
Jessica H. Hunt North Carolina State University, Raleigh

Search for other papers by Jessica H. Hunt in
Current site
Google Scholar
PubMed
Close
, and
Jasmine Welch-Ptak University of Texas at Austin

Search for other papers by Jasmine Welch-Ptak in
Current site
Google Scholar
PubMed
Close

We present the evolving fraction conceptions of two elementary school children with mathematics learning disabilities (MLD). We use qualitative analyses to capture the mathematical knowledge and experiences of each child and show how teaching was used to support advancement of their fractional reasoning. Results illustrate two viable pathways of advancing fractional thinking, both of which reflect students’ increasing levels of units coordination over time. We argue that recognizing and building on each child’s strengths—while respecting and accommodating for their MLD—was central to promoting their learning. Results provide an existence proof of a new evidence base for student-centered, problem-based instruction for students with MLD, grounded in a careful understanding of student mathematical thinking and accommodations for cognitive differences.

Contributor Notes

Juanita M. Silva, Department of Curriculum and Instruction, Texas State University, San Marcos, TX 78666; jsilva@txstate.edu

Jessica H. Hunt, Department of Teacher Education and Learning Sciences, North Carolina State University, Raleigh, NC 27695; jhunt5@ncsu.edu

Jasmine Welch-Ptak, Department of Curriculum and Instruction, University of Texas at Austin, Austin, TX 78712; miss.jasminewelch@utexas.edu

  • Collapse
  • Expand
Journal for Research in Mathematics Education
  • Baker, J. N., Rivera, C. J., Morgan, J. J., & Reese, N. (2015, Spring/Summer). Teaching algebraic equations to middle school students with intellectual disabilities. Journal of the American Academy of Special Education Professionals. http://files.eric.ed.gov/fulltext/EJ1134182.pdf

    • Search Google Scholar
    • Export Citation
  • Boyce, S., & Norton, A. (2016). Co-construction of fractions schemes and units coordinating structures. The Journal of Mathematical Behavior, 41, 1025. https://doi.org/10.1016/j.jmathb.2015.11.003

    • Search Google Scholar
    • Export Citation
  • Boyce, S., & Norton, A. (2017). Dylan’s units coordinating across contexts. The Journal of Mathematical Behavior, 45, 121136. https://doi.org/10.1016/j.jmathb.2016.12.009

    • Search Google Scholar
    • Export Citation
  • Brantlinger, E., Jimenez, R., Klingner, J., Pugach, M., & Richardson, V. (2005). Qualitative studies in special education. Exceptional Children, 71(2), 195207. https://doi.org/10.1177/001440290507100205

    • Search Google Scholar
    • Export Citation
  • Butler, F. M., Miller, S. P., Crehan, K., Babbitt, B., & Pierce, T. (2003). Fraction instruction for students with mathematics disabilities: Comparing two teaching sequences. Learning Disabilities Research & Practice, 18(2), 99111. https://doi.org/10.1111/1540-5826.00066

    • Search Google Scholar
    • Export Citation
  • Butterworth, B. (2005). Developmental dyscalculia. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 455467). Routledge.

    • Search Google Scholar
    • Export Citation
  • Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches (2nd ed.). Sage.

  • Empson, S. B. (2003). Low-performing students and teaching fractions for understanding: An interactional analysis. Journal for Research in Mathematics Education, 34(4), 305343. https://doi.org/10.2307/30034786

    • Search Google Scholar
    • Export Citation
  • Empson, S. B., Junk, D., Dominguez, H., & Turner, E. (2006). Fractions as the coordination of multiplicatively related quantities: A cross-sectional study of children’s thinking. Educational Studies in Mathematics, 63(1), 128. https://doi.org/10.1007/s10649-005-9000-6

    • Search Google Scholar
    • Export Citation
  • Empson, S. B., & Levi, L. (2011). Extending children’s mathematics: Fractions and decimals. Heinemann.

  • Fletcher, K. L., Huffman, L. F., Bray, N. W., & Grupe, L. A. (1998). The use of the microgenetic method with children with disabilities: Discovering competence. Early Education and Development, 9(4), 357373. https://doi.org/10.1207/s15566935eed0904_3

    • Search Google Scholar
    • Export Citation
  • Flores, M. M., Hinton, V. M., & Schweck, K. B. (2014). Teaching multiplication with regrouping to students with learning disabilities. Learning Disabilities Research & Practice, 29(4), 171183. https://doi.org/10.1111/ldrp.12043

    • Search Google Scholar
    • Export Citation
  • Fuchs, L. S., Malone, A. S., Schumacher, R. F., Namkung, J., & Wang, A. (2017). Fraction intervention for students with mathematics difficulties: Lessons learned from five randomized controlled trials. Journal of Learning Disabilities, 50(6), 631639. https://doi.org/10.1177/0022219416677249

    • Search Google Scholar
    • Export Citation
  • Fuchs, L. S., Newman-Gonchar, R., Schumacher, R., Dougherty, B., Bucka, N., Karp, K. S., Woodward, J., Clarke, B., Jordan, N. C., Gersten, R., Jayanthi, M., Keating, B., & Morgan, S. (2021). Assisting students struggling with mathematics: Intervention in the elementary grades (WWC Practice Guide No. 2021006). U.S. Departmetn of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, What Works Clearinghouse. https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/WWC2021006-Math-PG.pdf

    • Search Google Scholar
    • Export Citation
  • Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P., & Flojo, J. (2008). Mathematics instruction for students with learning disabilities or difficulty learning mathematics: A synthesis of the intervention research. Center on Instruction. http://files.eric.ed.gov/fulltext/ED521890.pdf

    • Search Google Scholar
    • Export Citation
  • Ginsburg, H. P. (1997). Entering the child’s mind: The clinical interview in psychological research and practice. Cambridge University Press. https://doi.org/10.1017/CBO9780511527777

    • Search Google Scholar
    • Export Citation
  • Hackenberg, A. J. (2007). Units coordination and the construction of improper fractions: A revision of the splitting hypothesis. The Journal of Mathematical Behavior, 26(1), 2747. https://doi.org/10.1016/j.jmathb.2007.03.002

    • Search Google Scholar
    • Export Citation
  • Hackenberg, A. J., Norton, A., & Wright, R. J. (2016). Developing fractions knowledge. Sage.

  • Hansen, N., Jordan, N. C., & Rodrigues, J. (2017). Identifying learning difficulties with fractions: A longitudinal study of student growth from third through sixth grade. Contemporary Educational Psychology, 50, 4559. https://doi.org/10.1016/j.cedpsych.2015.11.002

    • Search Google Scholar
    • Export Citation
  • Hunt, J. H., & Ainslie, J. (2021). Designing effective math interventions: An educator’s guide to learner-driven instruction. Routledge. https://doi.org/10.4324/9781003014744

    • Search Google Scholar
    • Export Citation
  • Hunt, J. H., & Empson, S. B. (2015). Exploratory study of informal strategies for equal sharing problems of students with learning disabilities. Learning Disabilities Quarterly, 38(4), 208220. https://doi.org/10.1177/0731948714551418

    • Search Google Scholar
    • Export Citation
  • Hunt, J. H., Martin, K., Khounmeuang, A., Silva, J., Patterson, B., & Welch-Ptak, J. (2020). Design, development, and initial testing of asset-based intervention grounded in trajectories of student fraction learning. Learning Disability Quarterly. Advance online publication. https://doi.org/10.1177/0731948720963589

    • Search Google Scholar
    • Export Citation
  • Hunt, J., & Silva, J. M. (2020). Emma’s negotiation of number: Implicit intensive intervention. Journal for Research in Mathematics Education, 51(3), 334360. https://doi.org/10.5951/jresemtheduc-2019-0067

    • Search Google Scholar
    • Export Citation
  • Hunt, J. H., Silva, J., & Lambert, R. (2019). Empowering students with specific learning disabilities: Jim’s concept of unit fraction. The Journal of Mathematical Behavior, 56, Article 100738. https://doi.org/10.1016/j.jmathb.2019.100738

    • Search Google Scholar
    • Export Citation
  • Hunt, J., & Tzur, R. (2017). Where is difference? Processes of mathematical remediation through a constructivist lens. The Journal of Mathematical Behavior, 48, 6276. https://doi.org/10.1016/j.jmathb.2017.06.007

    • Search Google Scholar
    • Export Citation
  • Hunt, J. H., & Tzur, R. (2022). Connecting theory to concept building: Designing instruction for learning. In Y. P. Xin, R. Tzur, & H. Thouless (Eds.), Enabling mathematics learning of struggling students (pp. 8399). Springer. https://doi.org/10.1007/978-3-030-95216-7_5

    • Search Google Scholar
    • Export Citation
  • Hunt, J. H., & Vasquez, E. III. (2014). Effects of ratio strategies intervention on knowledge of ratio equivalence for students with learning disability. The Journal of Special Education, 48(3), 180190. https://doi.org/10.1177/0022466912474102

    • Search Google Scholar
    • Export Citation
  • Hunt, J. H., Westenskow, A., Silva, J., & Welch-Ptak, J. (2016). Levels of participatory conception of fractional quantity along a purposefully sequenced series of equal sharing tasks: Stu’s trajectory. The Journal of Mathematical Behavior, 41, 4567. https://doi.org/10.1016/j.jmathb.2015.11.004

    • Search Google Scholar
    • Export Citation
  • Jackson, H. G., & Neel, R. S. (2006). Observing mathematics: Do Students with EBD have access to Standards-based mathematics instruction? Education & Treatment of Children, 29(4), 593614.

    • Search Google Scholar
    • Export Citation
  • Jordan, N. C., Rodrigues, J., Hansen, N., & Resnick, I. (2017). Fraction development in children: Importance of building numerical magnitude understanding. In D. C. Geary, D. B. Berch, R. J. Ochsendorf, & K. M. Koepke (Eds.), Acquisition of complex arithmetic skills and higher-order mathematics concepts (pp. 125140). Elsevier. https://doi.org/10.1016/B978-0-12-805086-6.00006-0

    • Search Google Scholar
    • Export Citation
  • Karp, K. (2013, January 24–26). The invisible 10%: Preparing teachers to teach mathematics to students with special needs [Judith Jacobs Lecture]. Seventeenth annual conference of the Association of Mathematics Teacher Educators, Orlando, FL, United States.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, L., Mazzocco, M. M., Dowker, A., von Aster, M., Göbel, S. M., Grabner, R. H., Henik, A., Jordan, N. C., Karmiloff-Smith, A. D., Kucian, K., Rubinsten, O., Szucs, D., Shalev, R., & Nuerk, H.-C. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 4, Article 516. https://doi.org/10.3389/fpsyg.2013.00516

    • Search Google Scholar
    • Export Citation
  • Kieran, T. (1976). On the mathematical, cognitive, and instructional foundations of rational numbers. In R. A. Lesh & D. A. Bradbard (Eds.), Number and measurement: Papers from a research workshop (pp. 101144). ERIC Information Analysis Center for Science, Mathematics, and Environmental Education. https://eric.ed.gov/?id=ED120027

    • Search Google Scholar
    • Export Citation
  • Lambert, R., & Tan, P. (2017). Conceptualizations of students with and without disabilities as mathematical problem solvers in educational research: A critical review. Education Sciences, 7(2), 5168. https://doi.org/10.3390/educsci7020051

    • Search Google Scholar
    • Export Citation
  • Lewis, K. E. (2014). Difference not deficit: Reconceptualizing mathematical learning disabilities. Journal for Research in Mathematics Education, 45(3), 351396. https://doi.org/10.5951/jresematheduc.45.3.0351

    • Search Google Scholar
    • Export Citation
  • Maldonado Rodríguez, L. A., Jessup, N., Myers, M., Louie, N., & Chao, T. (2022). A critical lens on Cognitively Guided Instruction: Perspectives from mathematics teacher educators of color. Mathematics Teacher Educator, 10(3), 191203. https://doi.org/10.5951/MTE.2020.0015

    • Search Google Scholar
    • Export Citation
  • Namkung, J. M., Fuchs, L. S., & Koziol, N. (2018). Does initial learning about the meaning of fractions present similar challenges for students with and without adequate whole-number skill? Learning and Individual Differences, 61, 151157. https://doi.org/10.1016/j.lindif.2017.11.018

    • Search Google Scholar
    • Export Citation
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. https://www.nctm.org/standards

  • Norton, A., Boyce, S., & Hatch, J. (2015). Coordinating units at the CandyDepot. Mathematics Teaching in the Middle School, 21(5), 280287. https://doi.org/10.5951/mathteacmiddscho.21.5.0280

    • Search Google Scholar
    • Export Citation
  • Norton, A., Boyce, S., Ulrich, C., & Phillips, N. (2015). Students’ units coordination activity: A cross-sectional analysis. The Journal of Mathematical Behavior, 39, 5166. https://doi.org/10.1016/j.jmathb.2015.05.001

    • Search Google Scholar
    • Export Citation
  • Norton, A., & Wilkins, J. L. M. (2010). Students’ partitive reasoning. The Journal of Mathematical Behavior, 29(4), 181194. https://doi.org/10.1016/j.jmathb.2010.10.001

    • Search Google Scholar
    • Export Citation
  • Olive, J., & Steffe, L. P. (2001). The construction of an iterative fractional scheme: The case of Joe. The Journal of Mathematical Behavior, 20(4), 413437. https://doi.org/10.1016/S0732-3123(02)00086-X

    • Search Google Scholar
    • Export Citation
  • Olive, J., & Steffe, L. P. (2010). The partitive, the iterative, and the unit composition schemes. In L. P. Steffe & J. Olive (Eds.), Children’s fractional knowledge (pp. 171223). Springer. https://doi.org/10.1007/978-1-4419-0591-8_7

    • Search Google Scholar
    • Export Citation
  • Reschly, D. J., & Hosp, J. L. (2004). State SLD identification policies and practices. Learning Disability Quarterly, 27(4), 197213. https://doi.org/10.2307/1593673

    • Search Google Scholar
    • Export Citation
  • Saldaña, J. (2015). The coding manual for qualitative researchers (3rd ed.). Sage.

  • Schoen, R. C., Rhoads, C., Perez, A. L., Tazaz, A. M., & Secada, W. G. (2022). Impact of Cognitively Guided Instruction on elementary school mathematics achievement: Five years after the initial opportunity [Working paper]. https://doi.org/10.33009/fsu.1653430141

    • Search Google Scholar
    • Export Citation
  • Schrank, F. A., McGrew, K. S., Ruef, M. L., Alvarado, C. G., Muñoz-Sandoval, A. F., & Woodcock, R. W. (2005). Batería III Woodcock-Muñoz. Riverside.

    • Search Google Scholar
    • Export Citation
  • Shin, M., & Bryant, D. P. (2015). A synthesis of mathematical and cognitive performances of students with mathematics learning disabilities. Journal of Learning Disabilities, 48(1), 96112. https://doi.org/10.1177/0022219413508324

    • Search Google Scholar
    • Export Citation
  • Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., Thompson, L., & Wray, J. (2010). Developing effective fractions instruction for kindergarten through 8th grade (IES Practice Guide No. 2010-4039). U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, What Works Clearinghouse. https://ies.ed.gov/ncee/wwc/practiceguide/15

    • Search Google Scholar
    • Export Citation
  • Silva, J. M. (2021). Through an equity lens: Teaching practices for children who are bilingual with learning disabilities during mathematics discussions. Insights Into Learning Disabilities, 18(2), 187209. https://www.ldw-ild.org/images/Silva_2021.pdf

    • Search Google Scholar
    • Export Citation
  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267306). Erlbaum.

    • Search Google Scholar
    • Export Citation
  • Strauss, A., & Corbin, J. (1994). Grounded theory methodology: An overview. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 273285). Sage.

    • Search Google Scholar
    • Export Citation
  • Streefland, L. (1993). Fractions: A realistic approach. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 289326). Erlbaum.

    • Search Google Scholar
    • Export Citation
  • Tan, P., & Kastberg, S. (2017). Calling for research collaborations and the use of dis/ability studies in mathematics education. Journal of Urban Mathematics Education, 10(2), 2538. https://doi.org/10.21423/jume-v10i2a321

    • Search Google Scholar
    • Export Citation
  • Turner, E., Dominguez, H., Maldonado, L., & Empson, S. (2013). English learners’ participation in mathematical discussion: Shifting positionings and dynamic identities. Journal for Research in Mathematics Education, 44(1), 199234. https://doi.org/10.5951/jresematheduc.44.1.0199

    • Search Google Scholar
    • Export Citation
  • Tzur, R. (1999). An integrated research on children’s construction of meaningful, symbolic, partitioning-related conceptions and the teacher’s role in fostering that learning. The Journal of Mathematical Behavior, 18(2), 123147. https://doi.org/10.1016/S0732-3123(99)00025-5

    • Search Google Scholar
    • Export Citation
  • Tzur, R. (2007). Fine grain assessment of students’ mathematical understanding: Participatory and anticipatory stages in learning a new mathematical conception. Educational Studies in Mathematics, 66(3), 273291. https://doi.org/10.1007/s10649-007-9082-4

    • Search Google Scholar
    • Export Citation
  • Tzur, R., & Hunt, J. H. (2022). Discerning learning as conceptual change: A vital reasoning tool for teachers. In Y. P. Xin, R. Tzur, & H. Thouless (Eds.), Enabling mathematics learning of struggling students (pp. 4771). Springer. https://doi.org/10.1007/978-3-030-95216-7_3

    • Search Google Scholar
    • Export Citation
  • Tzur, R., & Simon, M. (2004). Distinguishing two stages of mathematics conceptual learning. International Journal of Science and Mathematics Education, 2(2), 287304. https://doi.org/10.1007/s10763-004-7479-4

    • Search Google Scholar
    • Export Citation
  • von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. Routledge. https://doi.org/10.4324/9780203454220

  • Wechsler, D. (1974). Wechsler intelligence scale for children—Revised. Psychological Corporation.

  • Wilkins, J. L. M., & Norton, A. (2018). Learning progression toward a measurement concept of fractions. International Journal of STEM Education, 5, Article 27. https://doi.org/10.1186/s40594-018-0119-2

    • Search Google Scholar
    • Export Citation
  • Wilson, J., & Hunt, J. H. (2022). Marginalized within the margins: Supporting mathematics meaning making among students with learning disabilities. The Journal of Mathematical Behavior, 67, Article 100982. https://doi.org/10.1016/j.jmathb.2022.100982

    • Search Google Scholar
    • Export Citation
  • Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. R., & Ogbuehi, P. (2012). Improving mathematical problem solving in Grades 4 through 8 (IES Practice Guide No. 2012-4055). U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, What Works Clearinghouse. https://ies.ed.gov/ncee/wwc/PracticeGuide/16

    • Search Google Scholar
    • Export Citation
  • Xin, Y. P., & Tzur, R. (2016). Cross-disciplinary thematic special series: Special education and mathematics education. Learning Disability Quarterly, 39(4), 196198. https://doi.org/10.1177/0731948716669816

    • Search Google Scholar
    • Export Citation
  • Yeh, C., Ellis, M., & Mahmood, D. (2020). From the margin to the center: A framework for rehumanizing mathematics education for students with dis/abilities. The Journal of Mathematical Behavior, 58, Article 100758. https://doi.org/10.1016/j.jmathb.2020.100758

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1040 1040 552
Full Text Views 321 321 114
PDF Downloads 364 364 115
EPUB Downloads 0 0 0