Word Problem Performance of U.S. First Graders in the 20th Century and Common Core Era

Author:
Robert Schoen Florida State University, Tallahassee

Search for other papers by Robert Schoen in
Current site
Google Scholar
PubMed
Close
,
Ian Whitacre Florida State University, Tallahassee

Search for other papers by Ian Whitacre in
Current site
Google Scholar
PubMed
Close
, and
Zachary Champagne The Discovery School, Jacksonville, FL

Search for other papers by Zachary Champagne in
Current site
Google Scholar
PubMed
Close

Changes in U.S. textbooks indicate that U.S. first-grade students in the Common Core era were exposed to a wider variety of word problem types than students in previous generations were. We compared the performance of U.S. first graders in the Common Core era with that of previous generations in solving 11 types of additive word problems to investigate a decades-long debate—whether certain types of word problems are inherently more difficult than others or whether relative difficulty is influenced by exposure. We found that overall patterns of relative difficulty persist; however, U.S. first graders in the Common Core era outperformed their historical counterparts when solving the types of problems that rarely appeared in textbooks used in the 1980s.

Contributor Notes

Robert Schoen, Learning Systems Institute and School of Teacher Education, Florida State University, Tallahassee, FL 32306; rschoen@fsu.edu

Ian Whitacre, School of Teacher Education, Florida State University, Tallahassee, FL 32306; iwhitacre@fsu.edu

Zachary Champagne, The Discovery School, Jacksonville, FL 32217; zacharychampagne@gmail.com

  • Collapse
  • Expand
Journal for Research in Mathematics Education
  • Agodini, R. , & Harris, B. (2010). An experimental evaluation of four elementary school math curricula. Journal of Research on Educational Effectiveness, 3(3), 199253. https://doi.org/10.1080/19345741003770693

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akers, J. , Bastable, V. , Battista, M. T. , Hickey, K. , Clements, D. , Cochran, K. , Earnest, D. , Economopoulos, K. , Hollister, A. , Horowitz, N. , Kliman, M. , Leidl, E. , Mokros, J. , Murray, M. , Nemirovsky, R. , Oh, Y. , Perry, B. W. , Rubin, A. , Russell, S. J. , . . . Tierney, C. (2017). Investigations in number, data, and space: Grade 1 (3rd ed.). Pearson.

    • Search Google Scholar
    • Export Citation
  • Baroody, A. J. (1987). Children’s mathematical thinking: A developmental framework for preschool, primary, and special education teachers. Teachers College Press.

    • Search Google Scholar
    • Export Citation
  • Baroody, A. J. , & Ginsburg, H. P. (1986). The relationship between initial meaningful and mechanical knowledge of arithmetic. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 75112). Erlbaum.

    • Search Google Scholar
    • Export Citation
  • Berglund-Gray, G. , & Young, R. V. (1940). The effect of process sequence on the interpretation of two-step problems in arithmetic. The Journal of Educational Research, 34(1), 2129. https://doi.org/10.1080/00220671.1940.10880969

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blazar, D. , Heller, B. , Kane, T. J. , Polikoff, M. , Staiger, D. O. , Carrell, S. , Goldhaber, D. , Harris, D. N. , Hitch, R. , Holden, K. L. , & Kurlaender, M. (2020). Curriculum reform in the Common Core era: Evaluating elementary math textbooks across six U.S. states. Journal of Policy Analysis and Management, 39(4), 9661019. https://doi.org/10.1002/pam.22257

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, J. , Lo, J. J. , & Watanabe, T. (2002). Intended treatments of arithmetic average in U.S. and Asian school mathematics textbooks. School Science and Mathematics, 102(8), 391404. https://doi.org/10.1111/j.1949-8594.2002.tb17891.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, J. , Nie, B. , & Moyer, J. C. (2010). The teaching of equation solving: Approaches in Standards-based and traditional curricula in the United States. Pedagogies: An International Journal, 5(3), 170186. https://doi.org/10.1080/1554480X.2010.485724

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, J. H. , & Goldin, G. A. (1979). Variables affecting word problem difficulty in elementary school mathematics. Journal for Research in Mathematics Education, 10(5), 323336. https://doi.org/10.2307/748444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, T. P. , Fennema, E. , & Franke, M. L. (1996). Cognitively guided instruction: A knowledge base for reform in primary mathematics instruction. The Elementary School Journal, 97(1), 320. https://doi.org/10.1086/461846

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, T. P. , Fennema, E. , Franke, M. L. , Levi, L. , & Empson, S. B. (1999). Children’s mathematics: Cognitively guided instruction. Heinemann.

    • Search Google Scholar
    • Export Citation
  • Carpenter, T. P. , Fennema, E. , Franke, M. L. , Levi, L. , & Empson, S. B. (2015). Children’s mathematics: Cognitively guided instruction (2nd ed.). Heinemann.

    • Search Google Scholar
    • Export Citation
  • Carpenter, T. P. , Fennema, E. , Peterson, P. L. , & Carey, D. A. (1988). Teachers’ pedagogical content knowledge of students’ problem solving in elementary arithmetic. Journal for Research in Mathematics Education, 19(5), 385401. https://doi.org/10.5951/jresematheduc.19.5.0385

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, T. P. , Hiebert, J. , & Moser, J. M. (1981). Problem structure and first-grade children’s initial solution processes for simple addition and subtraction problems. Journal for Research in Mathematics Education, 12(1), 2739. https://doi.org/10.2307/748656

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, T. P. , & Moser, J. M. (1979). An investigation of the learning of addition and subtraction (Theoretical Paper No. 79). Wisconsin Research and Development Center for Individualized Schooling. https://files.eric.ed.gov/fulltext/ED188892.pdf

    • Search Google Scholar
    • Export Citation
  • Carpenter, T. P. , & Moser, J. M. (1983). The acquisition of addition and subtraction concepts. In R. A. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 744). Academic Press.

    • Search Google Scholar
    • Export Citation
  • Carpenter, T. P. , Moser, J. M. , & Romberg, T. A. (1982). Addition and subtraction: A cognitive perspective. Erlbaum.

  • Charles, R. I. , Bay-Williams, J. , Berry, R. Q., III , Caldwell, J. H. , Champagne, Z. C. , Copley, J. , Crown, W. , Fennell, F. , Karp, K. , Murphy, S. J. , Schielack, J. F. , & Suh, J. M. (2016). enVisionmath 2.0: Grade 1. Pearson.

    • Search Google Scholar
    • Export Citation
  • Christou, C. , & Philippou, G. (1998). The developmental nature of ability to solve one-step word problems. Journal for Research in Mathematics Education, 29(4), 436442. https://doi.org/10.2307/749860

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, D. H. , & Sarama, J. (2014). Learning and teaching early math: The learning trajectories approach (2nd ed.). Routledge. https://doi.org/10.4324/9780203520574

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, D. D. (1991). Children’s interpretations of arithmetic word problems. Cognition and Instruction, 8(3), 261289. https://doi.org/10.1207/s1532690xci0803_2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Corte, E. , & Verschaffel, L. (1987). The effect of semantic structure on first graders’ strategies for solving addition and subtraction word problems. Journal for Research in Mathematics Education, 18(5), 363381. https://doi.org/10.2307/749085

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, J. K. , Larson, M. , Leiva, M. A. , & Adams, T. L. (2013). Go math! Florida: Grade 1. Houghton Mifflin Harcourt.

  • Fan, L. , & Zhu, Y. (2007). Representation of problem-solving procedures: A comparative look at China, Singapore, and U.S. mathematics textbooks. Educational Studies in Mathematics, 66(1), 6175. https://doi.org/10.1007/s10649-006-9069-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennema, E. , Carpenter, T. P. , Franke, M. L. , Levi, L. , Jacobs, V. R. , & Empson, S. B. (1996). A longitudinal study of learning to use children’s thinking in mathematics instruction. Journal for Research in Mathematics Education, 27(4), 403434. https://doi.org/10.5951/jresematheduc.27.4.0403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischbein, E. , Deri, M. , Nello, M. S. , & Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16(1), 317. https://doi.org/10.2307/748969

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Florida Department of Education. (2007). Next generation sunshine state standards.

  • Fuchs, L. S. , Fuchs, D. , Compton, D. L. , Powell, S. R. , Seethaler, P. M. , Capizzi, A. M. , Schatschneider, C. , & Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 2943. https://doi.org/10.1037/0022-0663.98.1.29

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuson, K. C. (1992). Research on whole number addition and subtraction. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 243275). National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • Fuson, K. C. (2013). Math expressions: Grade 1 Common Core. Houghton Mifflin Harcourt.

  • Fuson, K. C. , Stigler, J. W. , & Bartsch, K. (1988). Grade placement of addition and subtraction topics in Japan, Mainland China, the Soviet Union, Taiwan, and the United States. Journal for Research in Mathematics Education, 19(5), 449456. https://doi.org/10.5951/jresematheduc.19.5.0449

    • Search Google Scholar
    • Export Citation
  • García, A. I. , Jiménez, J. E. , & Hess, S. (2006). Solving arithmetic word problems: An analysis of classification as a function of difficulty in children with and without arithmetic LD. Journal of Learning Disabilities, 39(3), 270281. https://doi.org/10.1177/00222194060390030601

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibb, E. G. (1956). Children’s thinking in the process of subtraction. The Journal of Experimental Education, 25(1), 7180. https://doi.org/10.1080/00220973.1956.11010564

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grouws, D. A. , Tarr, J. E. , Chávez, Ó. , Sears, R. , Soria, V. M. , & Taylan, R. D. (2013). Curriculum and implementation effects on high school students’ mathematics learning from curricula representing subject-specific and integrated content organizations. Journal for Research in Mathematics Education, 44(2), 416463. https://doi.org/10.5951/jresematheduc.44.2.0416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbel-Eisenmann, B. A. (2007). From intended curriculum to written curriculum: Examining the voice of a mathematics textbook. Journal for Research in Mathematics Education, 38(4), 344369.

    • Search Google Scholar
    • Export Citation
  • Hiebert, J. (1982). The position of the unknown set and children’s solutions of verbal arithmetic problems. Journal for Research in Mathematics Education, 13(5), 341349. https://doi.org/10.2307/749008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, C. J. , Bloom, H. S. , Black, A. R. , & Lipsey, M. W. (2008). Empirical benchmarks for interpreting effect sizes in research. Child Development Perspectives, 2(3), 172177. https://doi.org/10.1111/j.1750-8606.2008.00061.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, D. S. , & Choi, K. M. (2014). A comparison of Korean and American secondary school textbooks: The case of quadratic equations. Educational Studies in Mathematics, 85(2), 241263. https://doi.org/10.1007/s10649-013-9512-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-Y. , & Silver, E. A. (2014). Cognitive complexity of mathematics instructional tasks in a Taiwanese classroom: An examination of task sources. Journal for Research in Mathematics Education, 45(4), 460496. https://doi.org/10.5951/jresematheduc.45.4.0460

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jerman, M. E. , & Mirman, S. (1974). Linguistic and computational variables in problem solving in elementary mathematics. Educational Studies in Mathematics, 5(3), 317362. https://doi.org/10.1007/BF01424553

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, N. , & Matthews, L. (2012). Saxon math 1. Houghton Mifflin Harcourt.

  • LaVenia, M. , Cohen-Vogel, L. , & Lang, L. B. (2015). The Common Core State Standards initiative: An event history analysis of state adoption. American Journal of Education, 121(2), 145182. https://doi.org/10.1086/679389

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, A. B. , & Mayer, R. E. (1987). Students’ miscomprehension of relational statements in arithmetic word problems. Journal of Educational Psychology, 79(4), 363371. https://doi.org/10.1037/0022-0663.79.4.363

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, R. E. , Sims, V. , & Tajika, H. (1995). A comparison of how textbooks teach mathematical problem solving in Japan and the United States. American Educational Research Journal, 32(2), 443460. https://doi.org/10.2307/1163438

    • Search Google Scholar
    • Export Citation
  • Mesa, V. (2004). Characterizing practices associated with functions in middle school textbooks: An empirical approach. Educational Studies in Mathematics, 56(2–3), 255286. https://doi.org/10.1023/B:EDUC.0000040409.63571.56

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Council of Teachers of Mathematics. (2006). Curriculum focal points for prekindergarten through Grade 8 mathematics: A quest for coherence.

    • Search Google Scholar
    • Export Citation
  • National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. http://www.corestandards.org

    • Search Google Scholar
    • Export Citation
  • Nesher, P. , Greeno, J. G. , & Riley, M. S. (1982). The development of semantic categories for addition and subtraction. Educational Studies in Mathematics, 13(4), 373394. https://doi.org/10.1007/BF00366618

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olkun, S. , & Toluk, Z. (2002). Textbooks, word problems, and student success on addition and subtraction. International Journal for Mathematics Teaching and Learning. https://www.cimt.org.uk/journal/olkuntoluk.pdf

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otten, S. , & de Araujo, Z. (2015). Viral criticisms of Common Core mathematics. Teaching Children Mathematics, 21(9), 517520. https://doi.org/10.5951/teacchilmath.21.9.0517

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remillard, J. T. , Harris, B. , & Agodini, R. (2014). The influence of curriculum material design on opportunities for student learning. ZDM, 46(5), 735749. https://doi.org/10.1007/s11858-014-0585-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remillard, J. T. , & Heck, D. J. (2014). Conceptualizing the curriculum enactment process in mathematics education. ZDM, 46(5), 705718. https://doi.org/10.1007/s11858-014-0600-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, M. S. , & Greeno, J. G. (1988). Developmental analysis of understanding language about quantities and of solving problems. Cognition and Instruction, 5(1), 49101. https://doi.org/10.1207/s1532690xci0501_2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, M. S. , Greeno, J. G. , & Heller, J. I. (1983). Development of children’s problem-solving ability in arithmetic. In H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 153196). Academic Press.

    • Search Google Scholar
    • Export Citation
  • Sarama, J. , Clements, D. H. , Starkey, P. , Klein, A. , & Wakeley, A. (2008). Scaling up the implementation of a pre-kindergarten mathematics curriculum: Teaching for understanding with trajectories and technologies. Journal of Research on Educational Effectiveness, 1(2), 89119. https://doi.org/10.1080/19345740801941332

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, W. H. , & Houang, R. T. (2012). Curricular coherence and the Common Core State Standards for Mathematics. Educational Researcher, 41(8), 294308. https://doi.org/10.3102/0013189X12464517

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, W. , Houang, R. , & Cogan, L. (2002). A coherent curriculum: The case of mathematics. American Educator, 26(2), 118. https://www.aft.org/sites/default/files/periodicals/curriculum.pdf

    • Search Google Scholar
    • Export Citation
  • Schmidt, W. H. , McKnight, C. C. , & Raizen, S. (1997). A splintered vision: An investigation of U.S. science and mathematics education. Springer.

    • Search Google Scholar
    • Export Citation
  • Schoen, R. C. , Anderson, D. , & Bauduin, C. (2017). Elementary mathematics student assessment: Measuring the performance of Grade K, 1, and 2 students in number, operations, and equality in spring 2016 (Research report No. 2017-22). Florida State University. http://doi.org/10.17125/fsu.1534964774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoen, R. C. , Bray, W. S. , Tazaz, A. M. , & Buntin, C. K. (2022). Description of the cognitively guided instruction professional development program in Florida: 2013–2020. Florida State University. https://doi.org/10.33009/fsu.1643828800

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoen, R. C. , Champagne, Z. , Whitacre, I. , & McCrackin, S. (2021). Comparing the frequency and variation of additive word problems in United States first-grade textbooks in the 1980s and the Common Core era. School Science and Mathematics, 121(2), 110121. https://doi.org/10.1111/ssm.12447

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoen, R. C. , Erbilgin, E. , & Haciomeroglu, E. S. (2011). Analyzing the Next Generation Sunshine State Standards for mathematics: Is the state curriculum still a mile wide and an inch deep? Dimensions in Mathematics, 31(1), 3039.

    • Search Google Scholar
    • Export Citation
  • Schoen, R. C. , & Koon, S. (2021). Effects of an inquiry-oriented curriculum and professional development program on Grade 7 students’ understanding of statistics and on statistics instruction (Publication No. REL 2021–055). U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Southeast. https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=REL2021055

    • Search Google Scholar
    • Export Citation
  • Schoen, R. C. , LaVenia, M. , Champagne, Z. M. , Farina, K. , & Tazaz, A. M. (2016). Mathematics Performance and Cognition (MPAC) interview: Measuring first- and second-grade student achievement in number, operations, and equality in spring 2015 (Research report No. 2016-02). Florida State University. https://doi.org/10.17125/fsu.1493238666

    • Search Google Scholar
    • Export Citation
  • Secada, W. G. (1991). Degree of bilingualism and arithmetic problem solving in Hispanic first graders. The Elementary School Journal, 92(2), 213231. https://doi.org/10.1086/461689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Secada, W. G. , & Brandefur, J. L. (2000). CGI student achievement in region VI evaluation findings [Insert]. The Newsletter of the Comprehensive Center–Region VI, 5(2). http://archive.wceruw.org/ccvi/zz-pubs/Newsletters/Fall2000_CGInSystemicReform/cgi_insert_only.pdf

    • Search Google Scholar
    • Export Citation
  • Smith, J. P., III , Males, L. M. , & Gonulates, F. (2016). Conceptual limitations in curricular presentations of area measurement: One nation’s challenges. Mathematical Thinking and Learning, 18(4), 239270. https://doi.org/10.1080/10986065.2016.1219930

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, J.-W. (2012). A cross-national comparison of reform curricula in Korea and the U.S. in terms of cognitive complexity: The case of fraction addition and subtraction. ZDM, 44(2), 161174. https://doi.org/10.1007/s11858-012-0386-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steffe, L. P. (1966). The performance of first grade children in four levels of conservation of numerousness and three IQ groups when solving arithmetic addition problems (Technical Report No. 14). Research and Development Center for Learning and Re-Education, University of Wisconsin. https://files.eric.ed.gov/fulltext/ED016535.pdf

    • Search Google Scholar
    • Export Citation
  • Steffe, L. P. , & Johnson, D. C. (1971). Problem-solving performances of first-grade children. Journal for Research in Mathematics Education, 2(1), 5064. https://doi.org/10.2307/748477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stigler, J. W. , Fuson, K. C. , Ham, M. , & Kim, M. S. (1986). An analysis of addition and subtraction word problems in American and Soviet elementary mathematics textbooks. Cognition and Instruction, 3(3), 153171. https://doi.org/10.1207/s1532690xci0303_1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarr, J. E. , Grouws, D. A. , Chávez, Ó. , & Soria, V. M. (2013). The effects of content organization and curriculum implementation on students’ mathematics learning in second-year high school courses. Journal for Research in Mathematics Education, 44(4), 683729. https://doi.org/10.5951/jresematheduc.44.4.0683

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarr, J. E. , Reys, R. E. , Reys, B. J. , Chávez, Ó. , Shih, J. , & Osterlind, S. J. (2008). The impact of middles-grades mathematics curricula and the classroom learning environment on student achievement. Journal for Research in Mathematics Education, 39(3), 247280.

    • Search Google Scholar
    • Export Citation
  • Tran, D. (2016). Statistical association: Alignment of current U.S. high school textbooks with the Common Core State Standards for Mathematics. School Science and Mathematics, 116(5), 286296. https://doi.org/10.1111/ssm.12179

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Walle, J. A. , Lovin, L. H. , Karp, K. S. , & Bay-Williams, J. M. (2018). Teaching student-centered mathematics: Developmentally appropriate instruction for grade pre-K–2 (3rd ed.). Pearson.

    • Search Google Scholar
    • Export Citation
  • Van Dooren, W. , De Bock, D. , & Verschaffel, L. (2010). From addition to multiplication . . . and back: The development of students’ additive and multiplicative reasoning skills. Cognition and Instruction, 28(3), 360381. https://doi.org/10.1080/07370008.2010.488306

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verschaffel, L. , De Corte, E. , & Vierstraete, H. (1999). Upper elementary school pupils’ difficulties in modeling and solving nonstandard additive word problems involving ordinal numbers. Journal for Research in Mathematics Education, 30(3), 265285. https://doi.org/10.2307/749836

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verschaffel, L. , Greer, B. , & De Corte, E. (2007). Whole numbers concepts and operations. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 557628). National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • Wang, J. , & Lin, E. (2005). Comparative studies on U.S. and Chinese mathematics learning and the implications for standards-based mathematics teaching reform. Educational Researcher, 34(5), 313. https://doi.org/10.3102/0013189X034005003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitacre, I. , Schoen, R. C. , Champagne, Z. , & Goddard, A. (2016). Relational thinking: What’s the difference? Teaching Children Mathematics, 23(5), 302308. https://doi.org/10.5951/teacchilmath.23.5.0302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, N. , & Mesa, V. (2014). Describing cognitive orientation of calculus I tasks across different types of coursework. ZDM, 46(4), 675690. https://doi.org/10.1007/s11858-014-0588-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, Y. P. (2007). Word problem solving tasks in textbooks and their relation to student performance. The Journal of Educational Research, 100(6), 347360. https://doi.org/10.3200/JOER.100.6.347-360

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2327 1166 134
Full Text Views 608 102 4
PDF Downloads 813 140 4
EPUB Downloads 0 0 0