The Rationality of Undergraduate Mathematics Instructors: The Choice to Use Inquiry-Oriented Instructional Practices

View More View Less
  • 1 Texas State University

This article addresses why instructors choose to not use inquiry-oriented instructional practices (IO-IPs) even if they believe the practices are beneficial. A national sample of undergraduate mathematics instructors (N = 269) responded to questionnaires on their use of IO-IPs, beliefs on student learning, and recognition of professional obligations—their responsibilities toward various stakeholders including the individual student, mathematics as a discipline, the institution, and society (). Structural equation modeling indicates that learner-focused beliefs often predict the use of IO-IPs, but that recognition of some professional obligations can work in opposition to those beliefs. Future work advocating for instructional change could use this framework to provide instructors with resources that leverage their existing priorities.

Footnotes

This research was completed as a dissertation at the University of Michigan School of Education under the guidance of Patricio Herbst. Other committee members included Vilma Mesa, Hyman Bass, and Kai Cortina. Thank you to Angela Hodge for providing feedback on a draft of this work. Thanks to Pablo Mejía-Ramos of Rutgers University and the GRIP Lab for the original and updated list of mathematics department contact information. Finally, thanks to the many participants who invested multiple hours providing data for this study.

The guest editor for this article was Alan H. Schoenfeld.

Contributor Notes

Mollee C. Shultz, Department of Physics, Roy F. Mitte Bldg. 3240, 749 N. Comanche St., San Marcos, TX 78666; mollee@txstate.edu

Journal for Research in Mathematics Education
  • Andersen, M. H. (2011). Knowledge, attitudes, and instructional practices of Michigan community college math instructors: The search for a KAP gap in collegiate math [Unpublished doctoral dissertation]. Western Michigan University.

    • Search Google Scholar
    • Export Citation
  • Andrews-Larson, C. , Johnson, E. , Peterson, V. , & Keller, R. (2021). Doing math with mathematicians to support pedagogical reasoning about inquiry-oriented instruction. Journal of Mathematics Teacher Education, 24(2), 127154. https://doi.org/10.1007/s10857-019-09450-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apkarian, N. , Henderson, C. , Stains, M. , Raker, J. , Johnson, E. , & Dancy, M. (2021). What really impacts the use of active learning in undergraduate STEM education? Results from a national survey of chemistry, mathematics, and physics instructors. PLOS ONE, 16(2), Article e0247544. https://doi.org/10.1371/journal.pone.0247544

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall.

  • Barkatsas, A. , & Malone, J. (2005). A typology of mathematics teachers’ beliefs about teaching and learning mathematics and instructional practices. Mathematics Education Research Journal, 17(2), 6990. https://doi.org/10.1007/BF03217416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentler, P. M. , & Chou, C.-P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16(1), 78117. https://doi.org/10.1177/0049124187016001004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieda, K. N. , Sela, H. , & Chazan, D. (2015). “You are learning well my dear": Shifts in novice teachers’ talk about teaching during their internship. Journal of Teacher Education, 66(2), 150169. https://doi.org/10.1177/0022487114560645

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, R. , Kirkman, E. E. , & Maxwell, J. W. (2018). Statistical abstract of undergraduate programs in the mathematical sciences in the United States: Fall 2015 CBMS survey. American Mathematical Society. https://doi.org/10.1090/cbmssurvey/2015

    • Search Google Scholar
    • Export Citation
  • Boileau, N. , Ko, I. , & Herbst, P. G. (2018, April 13–17). Identifying and characterizing expertise in teaching mathematics with disposition to attend to professional obligations [Paper presentation]. Annual Meeting of the American Educational Research Association, New York, NY, USA.

    • Search Google Scholar
    • Export Citation
  • Brousseau, G. (1997). Theory of didactical situations in mathematics: Didactique des mathématiques 1970-1990 (N. Balacheff , M. Cooper , R. Sutherland , & V. Warfield , Eds. & Trans.). Kluwer Academic.

    • Search Google Scholar
    • Export Citation
  • Brousseau, G. (2003). Glossary of terms used in Didactique (G. Warfield , Trans.). http://faculty.washington.edu/warfield/guy-brousseau.com/biographie/glossaires

    • Search Google Scholar
    • Export Citation
  • Center for Postsecondary Research. (2015). The Carnegie classification of institutions of higher education: 2015 data file. https://carnegieclassifications.iu.edu/downloads/CCIHE2015-PublicDataFile.xlsx

    • Search Google Scholar
    • Export Citation
  • Center for Postsecondary Research. (2018). The Carnegie classification of institutions of higher education: 2018 update facts & figures. https://carnegieclassifications.iu.edu/downloads/CCIHE2018-FactsFigures.pdf

    • Search Google Scholar
    • Export Citation
  • Chazan, D. , & Herbst, P. (2011). Challenges of particularity and generality in depicting and discussing teaching. For the Learning of Mathematics, 31(1), 913. https://flm-journal.org/Articles/64A32C10924D5553CAE27EA8E62974.pdf

    • Search Google Scholar
    • Export Citation
  • Chazan, D. , Herbst, P. G. , & Clark, L. M. (2016). Research on the teaching of mathematics: A call to theorize the role of society and schooling in mathematics instruction. In D. H. Gitomer & C. A. Bell (Eds.), Handbook of research on teaching (5th ed., pp. 10391097). American Educational Research Association. https://doi.org/10.3102/978-0-935302-48-6_17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, L. A. , & Watson, D. (1995). Constructing validity: Basic issues in objective scale development. Psychological Assessment, 7(3), 309319. https://doi.org/10.1037/1040-3590.7.3.309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, L. M. , DePiper, J. N. , Frank, T. J. , Nishio, M. , Campbell, P. F. , Smith, T. M. , Griffin, M. J. , Rust, A. H. , Conant, D. L. , & Choi, Y. (2014). Teacher characteristics associated with mathematics teachers’ beliefs and awareness of their students’ mathematical dispositions. Journal for Research in Mathematics Education, 45(2), 246284. https://doi.org/10.5951/jresematheduc.45.2.0246

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, D. K. (1990). A revolution in one classroom: The case of Mrs. Oublier. Educational Evaluation and Policy Analysis, 12(3), 311329. https://doi.org/10.3102/01623737012003311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, D. K. , Raudenbush, S. W. , & Ball, D. L. (2003). Resources, instruction, and research. Educational Evaluation and Policy Analysis, 25(2), 119142. https://doi.org/10.3102/01623737025002119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, S. A. , Murphy, S. , & Fukawa-Connelly, T. (2016). Divergent definitions of inquiry-based learning in undergraduate mathematics. In T. Fukawa-Connelly , N. Engelke Infante , M. Wawro , & S. Brown (Eds.), Proceedings of the 19th annual Conference on Research in Undergraduate Mathematics Education (pp. 660665). Special Interest Group of the Mathematics Association of America for Research in Undergraduate Mathematics Education. http://sigmaa.maa.org/rume/RUME19v3.pdf

    • Search Google Scholar
    • Export Citation
  • Cooney, T. J. (1985). A beginning teacher’s view of problem solving. Journal for Research in Mathematics Education, 16(5), 324336. https://doi.org/10.2307/749355

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cross Francis, D. I. (2015). Dispelling the notion of inconsistencies in teachers’ mathematics beliefs and practices: A 3-year case study. Journal of Mathematics Teacher Education, 18(2), 173201. https://doi.org/10.1007/s10857-014-9276-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFranco, T. C. , & McGivney-Burelle, J. (2001). The beliefs and instructional practices of mathematics teaching assistants participating in a mathematics pedagogy course. In R. Speiser , C. A. Maher , & C. N. Walter (Eds.), Proceedings of the annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 681690). ERIC Clearinghouse for Science, Mathematics, and Environmental Education. https://files.eric.ed.gov/fulltext/ED476613.pdf

    • Search Google Scholar
    • Export Citation
  • Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process. D. C. Heath.

  • Eddy, S. L. , & Hogan, K. A. (2014). Getting under the hood: How and for whom does increasing course structure work? CBE—Life Sciences Education, 13(3), 453468. https://doi.org/10.1187/cbe.14-03-0050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engeln, K. , Euler, M. , & Maass, K. (2013). Inquiry-based learning in mathematics and science: A comparative baseline study of teachers’ beliefs and practices across 12 European countries. ZDM, 45(6), 823836. https://doi.org/10.1007/s11858-013-0507-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erickson, A. , & Herbst, P. (2018). Will teachers create opportunities for discussion when teaching proof in a geometry classroom? International Journal of Science and Mathematics Education, 16(1), 167181. https://doi.org/10.1007/s10763-016-9764-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ernst, D. C. , Hodge, A. , & Yoshinobu, S. (2017). What is inquiry-based learning? Notices of the American Mathematical Society, 64(6), 570574. https://doi.org/10.1090/noti1536

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finch, J. (1987). The vignette technique in survey research. Sociology, 21(1), 105114. https://doi.org/10.1177/0038038587021001008

  • Freeman, S. , Eddy, S. L. , McDonough, M. , Smith, M. K. , Okoroafor, N. , Jordt, H. , & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 84108415. https://doi.org/10.1073/pnas.1319030111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furr, R. M. , & Bacharach, V. R. (2013). Psychometrics: An introduction (2nd ed.). Sage.

  • Gellert, U. (2000). Mathematics instruction in safe space: Prospective elementary teachers’ views of mathematics education. Journal of Mathematics Teacher Education, 3(3), 251270. https://doi.org/10.1023/A:1009965408053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gholson, M. , & Martin, D. B. (2014). Smart girls, Black girls, mean girls, and bullies: At the intersection of identities and the mediating role of young girls’ social network in mathematical communities of practice. Journal of Education, 194(1), 1933. https://doi.org/10.1177/002205741419400105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golbeck, A. L. , Barr, T. H. , & Rose, C. A. (2018). Fall 2016 departmental profile report: Annual survey of the mathematical sciences in the US. Notices of the AMS, 65(8), 952962.

    • Search Google Scholar
    • Export Citation
  • Hair, J. F. , Black, W. C. , Babin, B. J. , Anderson, R. E. , & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Pearson.

  • Hayden, H. E. , Moore-Russo, D. , & Marino, M. R. (2013). One teacher’s reflective journey and the evolution of a lesson: Systematic reflection as a catalyst for adaptive expertise. Reflective Practice, 14(1), 144156. https://doi.org/10.1080/14623943.2012.732950

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayward, C. N. , Kogan, M. , & Laursen, S. L. (2016). Facilitating instructor adoption of inquiry-based learning in college mathematics. International Journal of Research in Undergraduate Mathematics Education, 2(1), 5982. https://doi.org/10.1007/s40753-015-0021-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayward, C. N. , Weston, T. , & Laursen, S. L. (2018). First results from a validation study of TAMI: Toolkit for Assessing Mathematics Instruction. In A. Weinberg , C. Rasmussen , J. Rabin , M. Wawro , & S. Brown (Eds.), Proceedings of the 21st annual Conference on Research in Undergraduate Mathematics Education (pp. 727735). Special Interest Group of the Mathematics Association of America for Research in Undergraduate Mathematics Education. http://sigmaa.maa.org/rume/RUME21.pdf

    • Search Google Scholar
    • Export Citation
  • Herbst, P. G. (2003). Using novel tasks in teaching mathematics: Three tensions affecting the work of the teacher. American Educational Research Journal, 40(1), 197238. https://doi.org/10.3102/00028312040001197

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbst, P. , & Chazan, D. (2011). Research on practical rationality: Studying the justification of actions in mathematics teaching. The Mathematics Enthusiast, 8(3), 405462. https://scholarworks.umt.edu/tme/vol8/iss3/2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbst, P. , & Chazan, D. (2012). On the instructional triangle and sources of justification for actions in mathematics teaching. ZDM, 44(5), 601612. https://doi.org/10.1007/s11858-012-0438-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbst, P. , & Chazan, D. (2015). Studying professional knowledge use in practice using multimedia scenarios delivered online. International Journal of Research & Method in Education, 38(3), 272287. https://doi.org/10.1080/1743727X.2015.1025742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbst, P. , Chazan, D. , Chen, C.-L. , Chieu, V.-M. , & Weiss, M. (2011). Using comics-based representations of teaching, and technology, to bring practice to teacher education courses. ZDM, 43(1), 91103. https://doi.org/10.1007/s11858-010-0290-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbst, P. , Chazan, D. , Kosko, K. W. , Dimmel, J. , & Erickson, A. (2016). Using multimedia questionnaires to study influences on the decisions mathematics teachers make in instructional situations. ZDM, 48(1–2), 167183. https://doi.org/10.1007/s11858-015-0727-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbst, P. G. , & Ko, I. (2018, April 13–17). Recognition of professional obligations of mathematics teaching and their role in justifying instructional actions [Paper presentation]. Annual Meeting of the American Educational Research Association, New York, NY, USA.

    • Search Google Scholar
    • Export Citation
  • Hu, L. , & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 155. https://doi.org/10.1080/10705519909540118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, L. , Doorman, M. , & van Joolingen, W. (2021). Inquiry-based learning practices in lower-secondary mathematics education reported by students from China and the Netherlands. International Journal of Science and Mathematics Education, 19(7), 15051521. https://doi.org/10.1007/s10763-020-10122-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, E. , Andrews-Larson, C. , Keene, K. , Melhuish, K. , Keller, R. , & Fortune, N. (2020). Inquiry and gender inequity in the undergraduate mathematics classroom. Journal for Research in Mathematics Education, 51(4), 504516. https://doi.org/10.5951/jresematheduc-2020-0043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, E. , Caughman, J. , Fredericks, J. , & Gibson, L. (2013). Implementing inquiry-oriented curriculum: From the mathematicians’ perspective. The Journal of Mathematical Behavior, 32(4), 743760. https://doi.org/10.1016/j.jmathb.2013.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, M. M. (1999). Approximations to indicators of student outcomes. Educational Evaluation and Policy Analysis, 21(4), 345363. https://doi.org/10.3102/01623737021004345

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kersting, N. B. , Givvin, K. B. , Sotelo, F. L. , & Stigler, J. W. (2010). Teachers’ analyses of classroom video predict student learning of mathematics: Further explorations of a novel measure of teacher knowledge. Journal of Teacher Education, 61(1–2), 172181. https://doi.org/10.1177/0022487109347875

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschner, P. A. , Sweller, J. , & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 7586. https://doi.org/10.1207/s15326985ep4102_1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford.

  • Kogan, M. , & Laursen, S. L. (2014). Assessing long-term effects of inquiry-based learning: A case study from college mathematics. Innovative Higher Education, 39(3), 183199. https://doi.org/10.1007/s10755-013-9269-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koziol, S. M., Jr. , & Burns, P. (1986). Teachers’ accuracy in self-reporting about instructional practices using a focused self-report inventory. The Journal of Educational Research, 79(4), 205209. https://doi.org/10.1080/00220671.1986.10885678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhs, T. M. , & Ball, D. L. (1986). Approaches to teaching mathematics: Mapping the domains of knowledge, skills and disposition. National Center for Research on Teacher Education, Michigan State University.

    • Search Google Scholar
    • Export Citation
  • Kuster, G. , Johnson, E. , Keene, K. , & Andrews-Larson, C. (2018). Inquiry-oriented instruction: A conceptualization of the instructional principles. PRIMUS, 28(1), 1330. https://doi.org/10.1080/10511970.2017.1338807

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, G. , Johnson, E. , Rupnow, R. , & Wilhelm, A. G. (2019). The inquiry-oriented instructional measure. International Journal of Research in Undergraduate Mathematics Education, 5(2), 183204. https://doi.org/10.1007/s40753-019-00089-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, O. N. , Rasmussen, C. , & Allen, K. (2005). Students’ retention of mathematical knowledge and skills in differential equations. School Science and Mathematics, 105(5), 227239. https://doi.org/10.1111/j.1949-8594.2005.tb18163.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laursen, S. L. , Hassi, M.-L. , Kogan, M. , & Weston, T. J. (2014). Benefits for women and men of inquiry-based learning in college mathematics: A multi-institution study. Journal for Research in Mathematics Education, 45(4), 406418. https://doi.org/10.5951/jresematheduc.45.4.0406

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laursen, S. L. , & Rasmussen, C. (2019). I on the prize: Inquiry approaches in undergraduate mathematics. International Journal of Research in Undergraduate Mathematics Education, 5(1), 129146. https://doi.org/10.1007/s40753-019-00085-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lew, K. , Fukawa-Connelly, T. P. , Mejía-Ramos, J. P. , & Weber, K. (2016). Lectures in advanced mathematics: Why students might not understand what the mathematics professor is trying to convey. Journal for Research in Mathematics Education, 47(2), 162198. https://doi.org/10.5951/jresematheduc.47.2.0162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M. , Fischman, D. , & Riggs, M. (2015). Defining, developing, and measuring “proclivities for teaching mathematics." Journal of Mathematics Teacher Education, 18(5), 447465. https://doi.org/10.1007/s10857-015-9321-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Little, T. D. , Cunningham, W. A. , Shahar, G. , & Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9(2), 151173. https://doi.org/10.1207/S15328007SEM0902_1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lortie, D. C. (1975). Schoolteacher: A sociological study. University of Chicago Press.

  • Love, B. , Hodge, A. , Corritore, C. , & Ernst, D. C. (2015). Inquiry-based learning and the flipped classroom model. PRIMUS, 25(8), 745762. https://doi.org/10.1080/10511970.2015.1046005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maaß, K. , & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: A synthesis. ZDM, 45(6), 779795. https://doi.org/10.1007/s11858-013-0528-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, A. , Gehrtz, J. , Rasmussen, C. , LaTona-Tequida, T. , & Vroom, K. (2020). Promoting instructor growth and providing resources: Course coordinator orientations toward their work. In S. S. Karunakaran , Z. Reed , & A. Higgins (Eds.), Proceedings of the 23rd annual Conference on Research in Undergraduate Mathematics Education (pp. 390397). Special Interest Group of the Mathematics Association of America for Research in Undergraduate Mathematics Education. http://sigmaa.maa.org/rume/RUME23.pdf

    • Search Google Scholar
    • Export Citation
  • Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59(1), 1419. https://doi.org/10.1037/0003-066X.59.1.14

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGivney-Burelle, J. , DeFranco, T. C. , Vinsonhaler, C. I. , & Santucci, K. B. (2001). Building bridges: Improving the teaching practices of TAs in the mathematics department. Journal of Graduate Teaching Assistant Development, 8(2), 5563.

    • Search Google Scholar
    • Export Citation
  • Mesa, V. , Celis, S. , & Lande, E. (2014). Teaching approaches of community college mathematics faculty: Do they relate to classroom practices? American Educational Research Journal, 51(1), 117151. https://doi.org/10.3102/0002831213505759

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesa, V. , Shultz, M. , & Jackson, A. (2019). Moving away from lecture in undergraduate mathematics: Managing tensions within a coordinated inquiry-based linear algebra course. International Journal of Research in Undergraduate Mathematics Education, 6(2), 245278. https://doi.org/10.1007/s40753-019-00109-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore-Russo, D. , & Viglietti, J. M. (2011). Teachers’ reactions to animations as representations of geometry instruction. ZDM, 43(1), 161173. https://doi.org/10.1007/s11858-010-0293-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore-Russo, D. A. , & Wilsey, J. N. (2014). Delving into the meaning of productive reflection: A study of future teachers’ reflections on representations of teaching. Teaching and Teacher Education, 37, 7690. https://doi.org/10.1016/j.tate.2013.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neff, J. A. (1979). Interaction versus hypothetical others: The use of vignettes in attitude research. Sociology and Social Research, 64(1), 105125.

    • Search Google Scholar
    • Export Citation
  • Newfield, J. (1980). Accuracy of teacher reports: Reports and observations of specific classroom behaviors. The Journal of Educational Research, 74(2), 7882. https://doi.org/10.1080/00220671.1980.10885287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niemand, T. , & Mai, R. (2018). Flexible cutoff values for fit indices in the evaluation of structural equation models. Journal of the Academy of Marketing Science, 46(6), 11481172. https://doi.org/10.1007/s11747-018-0602-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester Jr . (Ed.), Second handbook of research on mathematics teaching and learning (pp. 257318). National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, C. , & Ellis, J. (2015). Calculus coordination at PhD-granting universities: More than just using the same syllabus, textbook, and final exam. In D. Bressoud , V. Mesa , & C. Rasmussen (Eds.), Insights and recommendations from the MAA national study of college calculus (pp. 107115). Mathematical Association of America. https://www.maa.org/sites/default/files/pdf/cspcc/InsightsandRecommendations.pdf

    • Search Google Scholar
    • Export Citation
  • Rasmussen, C. , Kwon, O. N. , Allen, K. , Marrongelle, K. , & Burtch, M. (2006). Capitalizing on advances in mathematics and K–12 mathematics education in undergraduate mathematics: An inquiry-oriented approach to differential equations. Asia Pacific Education Review, 7(1), 8593. https://doi.org/10.1007/BF03036787

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Retsek, D. Q. (2013). Chop wood, carry water, use definitions: Survival lessons of an IBL rookie. PRIMUS, 23(2), 173192. https://doi.org/10.1080/10511970.2012.716144

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of “well-taught" mathematics courses. Educational Psychologist, 23(2), 145166. https://doi.org/10.1207/s15326985ep2302_5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenfeld, A. H. (2011). How we think: A theory of goal-oriented decision making and its educational applications. Routledge.

  • Schoenfeld, A. H. , & Kilpatrick, J. (2013). A US perspective on the implementation of inquiry-based learning in mathematics. ZDM, 45(6), 901909. https://doi.org/10.1007/s11858-013-0531-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shultz, M. (2020). The rationality of college mathematics instructors: The choice to use inquiry-oriented instruction [Doctoral dissertation, University of Michigan]. Deep Blue Documents. http://hdl.handle.net/2027.42/155118

    • Search Google Scholar
    • Export Citation
  • Shultz, M. , & Herbst, P. (2019). The choice to use inquiry-oriented instruction: The INQUIRE instrument and differences across upper and lower division undergraduate courses. In A. Weinberg , D. Moore-Russo , H. Soto , & M. Wawro (Eds.), Proceedings of the 22nd annual Conference on Research in Undergraduate Mathematics Education (pp. 558567). Special Interest Group of the Mathematics Association of America for Research in Undergraduate Mathematics Education. http://sigmaa.maa.org/rume/RUME22_Proceedings.pdf

    • Search Google Scholar
    • Export Citation
  • Skott, J. (2001). The emerging practices of a novice teacher: The roles of his school mathematics images. Journal of Mathematics Teacher Education, 4(1), 328. https://doi.org/10.1023/A:1009978831627

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, N. (2001). Connecting beliefs and teaching practices: A study of teaching assistants in reform-oriented calculus courses [Unpublished doctoral dissertation]. University of California–Berkeley.

    • Search Google Scholar
    • Export Citation
  • Speer, N. M. (2005). Issues of methods and theory in the study of mathematics teachers’ professed and attributed beliefs. Educational Studies in Mathematics, 58(3), 361391. https://doi.org/10.1007/s10649-005-2745-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stains, M. , Harshman, J. , Barker, M. K. , Chasteen, S. V. , Cole, R. , DeChenne-Peters, S. E. , Eagan, M. K., Jr. , Esson, J. M. , Knight, J. K. , Laski, F. A. , Levis-Fitzgerald, M. , Lee, C. J. , Lo, S. M. , McDonnell, L. M. , McKay, T. A. , Michelotti, N. , Musgrove, A. , Palmer, M. S. , Plank, K. M. , . . . Young, A. M. (2018). Anatomy of STEM teaching in North American universities. Science, 359(6383), 14681470. https://doi.org/10.1126/science.aap8892

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sztajn, P. (2003). Adapting reform ideas in different mathematics classrooms: Beliefs beyond mathematics. Journal of Mathematics Teacher Education, 6(1), 5375. https://doi.org/10.1023/A:1022171531285

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tavakol, M. , & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 5355. https://doi.org/10.5116/ijme.4dfb.8dfd

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theobald, E. J. , Hill, M. J. , Tran, E. , Agrawal, S. , Arroyo, E. N. , Behling, S. , Chambwe, N. , Cintrón, D. L. , Cooper, J. D. , Dunster, G. , Grummer, J. A. , Hennessey, K. , Hsiao, J. , Iranon, N. , Jones, L., II , Jordt, H. , Keller, M. , Lacey, M. E. , Littlefield, C. E. , . . . Freeman, S. (2020). Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. Proceedings of the National Academy of Sciences of the United States of America, 117(12), 64766483. https://doi.org/10.1073/pnas.1916903117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, J. F. , Speer, N. M. , & Rossa, B. (2007). Beyond mathematical content knowledge: A mathematician’s knowledge needed for teaching an inquiry-oriented differential equations course. The Journal of Mathematical Behavior, 26(3), 247266. https://doi.org/10.1016/j.jmathb.2007.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walshaw, M. , & Anthony, G. (2008). The teacher’s role in classroom discourse: A review of recent research in mathematics classrooms. Review of Educational Research, 78(3), 516551. https://doi.org/10.3102/0034654308320292

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wawro, M. , Rasmussen, C. , Zandieh, M. , Sweeney, G. F. , & Larson, C. (2012). An inquiry-oriented approach to span and linear independence: The case of the Magic Carpet Ride sequence. PRIMUS, 22(8), 577599. https://doi.org/10.1080/10511970.2012.667516

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webel, C. , & Platt, D. (2015). The role of professional obligations in working to change one’s teaching practices. Teaching and Teacher Education, 47, 204217. https://doi.org/10.1016/j.tate.2015.01.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkins, J. L. M. (2008). The relationship among elementary teachers’ content knowledge, attitudes, beliefs, and practices. Journal of Mathematics Teacher Education, 11(2), 139164. https://doi.org/10.1007/s10857-007-9068-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, M. , Apkarian, N. , Uhing, K. , Martinez, A. E. , Rasmussen, C. , & Smith, W. M. (2021). In the driver’s seat: Course coordinators as change agents for active learning in university precalculus to calculus 2. International Journal of Research in Undergraduate Mathematics Education. Advance online publication. https://doi.org/10.1007/s40753-021-00153-w

    • Search Google Scholar
    • Export Citation
  • Wolf, E. J. , Harrington, K. M. , Clark, S. L. , & Miller, M. W. (2013). Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 73(6), 913934. https://doi.org/10.1177/0013164413495237

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshinobu, S. , & Jones, M. G. (2012). The coverage issue. PRIMUS, 22(4), 303316. https://doi.org/10.1080/10511970.2010.507622

All Time Past Year Past 30 Days
Abstract Views 232 232 65
Full Text Views 162 162 110
PDF Downloads 142 142 50
EPUB Downloads 0 0 0