“Bold Problem Solving”: A New Construct for Understanding Gender Differences in Mathematics

Author:
Sarah Theule Lubienski Indiana University

Search for other papers by Sarah Theule Lubienski in
Current site
Google Scholar
PubMed
Close
,
Colleen M. Ganley Florida State University

Search for other papers by Colleen M. Ganley in
Current site
Google Scholar
PubMed
Close
,
Martha B. Makowski University of Alabama

Search for other papers by Martha B. Makowski in
Current site
Google Scholar
PubMed
Close
,
Emily K. Miller West Chester University

Search for other papers by Emily K. Miller in
Current site
Google Scholar
PubMed
Close
, and
Jennifer D. Timmer Vanderbilt University

Search for other papers by Jennifer D. Timmer in
Current site
Google Scholar
PubMed
Close

Despite progress toward gender equity, troubling disparities in mathematical problem-solving performance and related outcomes persist. To investigate why, we build on recurrent findings in previous studies to introduce a new construct, “bold problem solving,” which involves approaching mathematics problems in inventive ways. We introduce a self-report survey of bold problem-solving orientation and find that it mediates gender differences in problem-solving performance for both high-achieving middle school students (n = 79) and a more diverse sample of high school students (n = 222). Confidence mediates the relation between gender and bold problem-solving orientation, with mixed results for mental rotation skills and teacher-pleasing tendencies as mediators. Overall, the new bold problem-solving construct appears promising for advancing our understanding of gender differences in mathematics.

Footnotes

This work was supported by the Institute of Education Sciences, U.S. Department of Education (Grant No. R305B100017 and R305B170009). The views expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education.

Contributor Notes

Sarah Theule Lubienski, Department of Curriculum and Instruction, Indiana University, 201 North Rose Ave., Bloomington, IN 47405; stlubien@iu.edu

Colleen M. Ganley, Department of Psychology and Learning Systems Institute, Florida State University, 1107 West Call St., Tallahassee, FL 32306; cganley@fsu.edu

Martha B. Makowski, Department of Mathematics, University of Alabama, Gordon Palmer Hall, Tuscaloosa, AL 35487; mbmakowski@ua.edu

Emily K. Miller, Department of Mathematics, West Chester University, 25 University Ave., West Chester, PA 19382; emiller@wcupa.edu

Jennifer D. Timmer, Department of Leadership, Policy, and Organizations, Vanderbilt University, 404 Wyatt Center, Nashville, TN 37240; jennifer.timmer@vanderbilt.edu

  • Collapse
  • Expand
Journal for Research in Mathematics Education
  • 1.

    American Association of University Women. (2018, Fall). The simple truth about the gender pay gap. https://www.aauw.org/app/uploads/2020/02/AAUW-2018-SimpleTruth-nsa.pdf

    • Search Google Scholar
    • Export Citation
  • 2.

    Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11(5), 181185. https://doi.org/10.1111/1467-8721.00196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14(2), 243248. https://doi.org/10.3758/BF03194059

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bauer, G. R., Braimoh, J., Scheim, A. I., & Dharma, C. (2017). Transgender-inclusive measures of sex/gender for population surveys: Mixed-methods evaluation and recommendations. PLOS ONE, 12(5), Article e0178043. https://doi.org/10.1371/journal.pone.0178043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Beahan, L. (1992). Sex-related differences in autonomous learning behaviours and mathematics achievement [Unpublished honors thesis, Edith Cowan University]. Research Online Institutional Repository. https://ro.ecu.edu.au/theses_hons/427

    • Search Google Scholar
    • Export Citation
  • 6.

    Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences, 107(5), 18601863. https://doi.org/10.1073/pnas.0910967107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bench, S. W., Lench, H. C., Liew, J., Miner, K., & Flores, S. A. (2015). Gender gaps in overestimation of math performance. Sex Roles, 72(11–12), 536546. https://doi.org/10.1007/s11199-015-0486-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    • Search Google Scholar
    • Export Citation
  • 9.

    Byrnes, J. P., Miller, D. C., & Schafer, W. D. (1999). Gender differences in risk taking: A meta-analysis. Psychological Bulletin, 125(3), 367383. https://doi.org/10.1037/0033-2909.125.3.367

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Carr, M., & Jessup, D. L. (1997). Gender differences in first-grade mathematics strategy use: Social and metacognitive influences. Journal of Educational Psychology, 89(2), 318328. https://doi.org/10.1037/0022-0663.89.2.318

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Casey, M. B., Nuttall, R. L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties. Developmental Psychology, 33(4), 669680. https://doi.org/10.1037/0012-1649.33.4.669

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697705. https://doi.org/10.1037/0012-1649.31.4.697

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Catsambis, S. (1994). The path to math: Gender and racial-ethnic differences in mathematics participation from middle school to high school. Sociology of Education, 67(3), 199215. https://doi.org/10.2307/2112791

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Che, M., Wiegert, E., & Threlkeld, K. (2012). Problem solving strategies of girls and boys in single-sex mathematics classrooms. Educational Studies in Mathematics, 79(2), 311326. https://doi.org/10.1007/s10649-011-9346-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Cheng, Y.-L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 211. https://doi.org/10.1080/15248372.2012.725186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Cimpian, J. R., Lubienski, S. T., Timmer, J. D., Makowski, M. B., & Miller, E. K. (2016). Have gender gaps in math closed? Achievement, teacher perceptions, and learning behaviors across two ECLS-K cohorts. AERA Open, 2(4), 119. https://doi.org/10.1177/2332858416673617

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    College Board. (2016). 2016 College-bound seniors: Total group profile report. https://reports.collegeboard.org/pdf/total-group-2016.pdf

    • Search Google Scholar
    • Export Citation
  • 18.

    Corbett, C., & Hill, C. (2012). Graduating to a pay gap: The earnings of women and men one year after college graduation. American Association of University Women. https://ww3.aauw.org/files/2013/02/graduating-to-a-pay-gap-the-earnings-of-women-and-men-one-year-after-college-graduation.pdf

    • Search Google Scholar
    • Export Citation
  • 19.

    Cvencek, D., Meltzoff, A. N., & Greenwald, A. G. (2011). Math–gender stereotypes in elementary school children. Child Development, 82(3), 766779. https://doi.org/10.1111/j.1467-8624.2010.01529.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Downey, D. B., & Vogt Yuan, A. S. (2005). Sex differences in school performance during high school: Puzzling patterns and possible explanations. The Sociological Quarterly, 46(2), 299321. https://doi.org/10.1111/j.1533-8525.2005.00014.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Dweck, C. S. (2007). Is math a gift? Beliefs that put females at risk. In S. J. Ceci & W. M. Williams (Eds.), Why aren’t more women in science?: Top researchers debate the evidence (pp. 4755). American Psychological Association. https://doi.org/10.1037/11546-004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Eccles, J. S., & Wang, M.-T. (2016). What motivates females and males to pursue careers in mathematics and science? International Journal of Behavioral Development, 40(2), 100106. https://doi.org/10.1177/0165025415616201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Esmonde, I. (2011). Snips and snails and puppy dogs’ tails: Genderism and mathematics education. For the Learning of Mathematics, 31(2), 2731.

    • Search Google Scholar
    • Export Citation
  • 24.

    Fennema, E., Carpenter, T. P., Jacobs, V. R., Franke, M. L., & Levi, L. W. (1998). A longitudinal study of gender differences in young children’s mathematical thinking. Educational Researcher, 27(5), 611. https://doi.org/10.3102/0013189X027005006

    • Search Google Scholar
    • Export Citation
  • 25.

    Fennema, E., & Peterson, P. L. (1985). Autonomous learning behavior: A possible explanation of sex-related differences in mathematics. Educational Studies in Mathematics, 16(3), 309311. https://doi.org/10.1007/BF00776738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Fennema, E., & Peterson, P. L. (1986). Teacher-student interactions and sex-related differences in learning mathematics. Teaching and Teacher Education, 2(1), 1942. https://doi.org/10.1016/0742-051X(86)90003-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Fennema, E., & Sherman, J. A. (1976). Fennema-Sherman Mathematics Attitudes Scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Journal for Research in Mathematics Education, 7(5), 324326. https://doi.org/10.2307/748467

    • Search Google Scholar
    • Export Citation
  • 28.

    Fennema, E., & Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal for Research in Mathematics Education, 16(3), 184206. https://doi.org/10.2307/748393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Fryer, R. G., Jr., & Levitt, S. D. (2004). Understanding the Black-White test score gap in the first two years of school. Review of Economics and Statistics, 86(2), 447464. https://doi.org/10.1162/003465304323031049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Gallagher, A. M. (1992). Sex differences in problem-solving strategies used by high-scoring examinees on the SAT-M. ETS Research Report Series, 1992(1), i35. https://doi.org/10.1002/j.2333-8504.1992.tb01464.x

    • Search Google Scholar
    • Export Citation
  • 31.

    Gallagher, A. M., & De Lisi, R. (1994). Gender differences in Scholastic Aptitude Test: Mathematics problem solving among high-ability students. Journal of Educational Psychology, 86(2), 204211. https://doi.org/10.1037/0022-0663.86.2.204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Gallagher, A. M., De Lisi, R., Holst, P. C., McGillicuddy-De Lisi, A. V., Morely, M., & Cahalan, C. (2000). Gender differences in advanced mathematical problem solving. Journal of Experimental Child Psychology, 75(3), 165190. https://doi.org/10.1006/jecp.1999.2532

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ganley, C. M., & Lubienski, S. T. (2016). Mathematics confidence, interest, and performance: Examining gender patterns and reciprocal relations. Learning and Individual Differences, 47, 182193. https://doi.org/10.1016/j.lindif.2016.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Ganley, C. M., & Vasilyeva, M. (2014). The role of anxiety and working memory in gender differences in mathematics. Journal of Educational Psychology, 106(1), 105120. https://doi.org/10.1037/a0034099

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Geer, E. A., Quinn, J. M., & Ganley, C. M. (2019). Relations between spatial skills and math performance in elementary school children: A longitudinal investigation. Developmental Psychology, 55(3), 637652. https://doi.org/10.1037/dev0000649

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Gholson, M. L. (2016). Clean corners and algebra: A critical examination of the constructed invisibility of Black girls and women in mathematics. The Journal of Negro Education, 85(3), 290301. https://doi.org/10.7709/jnegroeducation.85.3.0290

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Goodchild, S., & Grevholm, B. (2009). An exploratory study of mathematics test results: What is the gender effect? International Journal of Science and Mathematics Education, 7(1), 161182. https://doi.org/10.1007/s10763-007-9114-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Prentice Hall.

  • 39.

    Hall, J. (2014). Unpacking “gender issues” research. Philosophy of Mathematics Education Journal, 28, 110.

  • 40.

    Hawes, Z., & Ansari, D. (2020). What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior. Psychonomic Bulletin & Review, 27(3), 465482. https://doi.org/10.3758/s13423-019-01694-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Hiebert, J. (2003). What research says about the NCTM Standards. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to Principles and standards for school mathematics (pp. 523). National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • 42.

    Hornburg, C. B., Rieber, M. L., & McNeil, N. M. (2017). An integrative data analysis of gender differences in children’s understanding of mathematical equivalence. Journal of Experimental Child Psychology, 163, 140150. https://doi.org/10.1016/j.jecp.2017.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hyde, J. S., & Jaffee, S. (1998). Perspectives from social and feminist psychology. Educational Researcher, 27(5), 1416. https://doi.org/10.3102/0013189X027005014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321(5888), 494495. https://doi.org/10.1126/science.1160364

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Innabi, H., & Dodeen, H. (2018). Gender differences in mathematics achievement in Jordan: A differential item functioning analysis of the 2015 TIMSS. School Science and Mathematics, 118(3–4), 127137. https://doi.org/10.1111/ssm.12269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Jones, M. G., Howe, A., & Rua, M. J. (2000). Gender differences in students’ experiences, interests, and attitudes toward science and scientists. Science Education, 84(2), 180192. https://doi.org/10.1002/(SICI)1098-237X(200003)84:2<180::AID-SCE3>3.0.CO;2-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Jouini, E., Karehnke, P., & Napp, C. (2018). Stereotypes, underconfidence and decision-making with an application to gender and math. Journal of Economic Behavior & Organization, 148, 3445. https://doi.org/10.1016/j.jebo.2018.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Kimball, M. M. (1989). A new perspective on women’s math achievement. Psychological Bulletin, 105(2), 198214. https://doi.org/10.1037/0033-2909.105.2.198

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Press.

  • 50.

    Kloosterman, P., & Stage, F. K. (1992). Measuring beliefs about mathematical problem solving. School Science and Mathematics, 92(3), 109115. https://doi.org/10.1111/j.1949-8594.1992.tb12154.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27(1), 2963. https://doi.org/10.3102/00028312027001029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Laski, E. V., Casey, B. M., Yu, Q., Dulaney, A., Heyman, M., & Dearing, E. (2013). Spatial skills as a predictor of first grade girls’ use of higher level arithmetic strategies. Learning and Individual Differences, 23, 123130. https://doi.org/10.1016/j.lindif.2012.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Leyva, L. A. (2017). Unpacking the male superiority myth and masculinization of mathematics at the intersections: A review of research on gender in mathematics education. Journal for Research in Mathematics Education, 48(4), 397433. https://doi.org/10.5951/jresematheduc.48.4.0397

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136(6), 11231135. https://doi.org/10.1037/a0021276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 14791498. https://doi.org/10.2307/1130467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Lombardi, C. M., Casey, B. M., Pezaris, E., Shadmehr, M., & Jong, M. (2019). Longitudinal analysis of associations between 3-D mental rotation and mathematics reasoning skills during middle school: Across and within genders. Journal of Cognition and Development, 20(4), 487509. https://doi.org/10.1080/15248372.2019.1614592

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Lubienski, S. T., & Ganley, C. M. (2017). Research on gender and mathematics. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 649666). National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • 58.

    Makowski, M. B., & Miller, E. K. (2018, April 13–17). Observing “bold problem-solving” behaviors in high-achieving boys and girls: Findings, issues, and reflections [Paper presentation]. American Educational Research Association Annual Meeting, New York, NY, United States.

    • Search Google Scholar
    • Export Citation
  • 59.

    Maloney, E. A., Waechter, S., Risko, E. F., & Fugelsang, J. A. (2012). Reducing the sex difference in math anxiety: The role of spatial processing ability. Learning and Individual Differences, 22(3), 380384. https://doi.org/10.1016/j.lindif.2012.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Maltese, A. V., & Tai, R. H. (2010). Eyeballs in the fridge: Sources of early interest in science. International Journal of Science Education, 32(5), 669685. https://doi.org/10.1080/09500690902792385

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Marsh, H. W., & Martin, A. J. (2011). Academic self-concept and academic achievement: Relations and causal ordering. British Journal of Educational Psychology, 81(1), 5977. https://doi.org/10.1348/000709910X503501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    McGraw, R., Lubienski, S. T., & Strutchens, M. E. (2006). A closer look at gender in NAEP mathematics achievement and affect data: Intersections with achievement, race/ethnicity, and socioeconomic status. Journal for Research in Mathematics Education, 37(2), 129150.

    • Search Google Scholar
    • Export Citation
  • 63.

    Miller, R. B., Greene, B. A., Montalvo, G. P., Ravindran, B., & Nichols, J. D. (1996). Engagement in academic work: The role of learning goals, future consequences, pleasing others, and perceived ability. Contemporary Educational Psychology, 21(4), 388422. https://doi.org/10.1006/ceps.1996.0028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. In J. B. Benson (Ed.), Advances in child development and behavior (Vol. 42, pp. 197243). Elsevier. https://doi.org/10.1016/B978-0-12-394388-0.00006-X

    • Search Google Scholar
    • Export Citation
  • 65.

    Musto, M. (2019). Brilliant or bad: The gendered social construction of exceptionalism in early adolescence. American Sociological Review, 84(3), 369393. https://doi.org/10.1177/0003122419837567

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user’s guide (8th ed.). https://www.statmodel.com/download/usersguide/MplusUserGuideVer_8.pdf

    • Search Google Scholar
    • Export Citation
  • 67.

    National Science Foundation. (2019). Women, minorities, and persons with disabilities in science and engineering: 2019 (Special report No. 19-304). https://ncses.nsf.gov/pubs/nsf19304

    • Search Google Scholar
    • Export Citation
  • 68.

    Organisation for Economic Co-Operation and Development. (2015). The ABC of gender equality in education: Aptitude, behaviour, confidence. https://doi.org/10.1787/9789264229945-en

    • Search Google Scholar
    • Export Citation
  • 69.

    Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse Mental Rotations Test: Different versions and factors that affect performance. Brain and Cognition, 28(1), 3958. https://doi.org/10.1006/brcg.1995.1032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Pomerantz, E. M., Altermatt, E. R., & Saxon, J. L. (2002). Making the grade but feeling distressed: Gender differences in academic performance and internal distress. Journal of Educational Psychology, 94(2), 396404. https://doi.org/10.1037/0022-0663.94.2.396

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879891. https://doi.org/10.3758/BRM.40.3.879

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Ready, D. D., LoGerfo, L. F., Burkam, D. T., & Lee, V. E. (2005). Explaining girls’ advantage in kindergarten literacy learning: Do classroom behaviors make a difference? The Elementary School Journal, 106(1), 2138. https://doi.org/10.1086/496905

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Reardon, S. F., Fahle, E. M., Kalogrides, D., Podolsky, A., & Zárate, R. C. (2019). Gender achievement gaps in U.S. school districts. American Educational Research Journal, 56(6), 24742508. https://doi.org/10.3102/0002831219843824

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Reardon, S. F., Kalogrides, D., Fahle, E. M., Podolsky, A., & Zárate, R. C. (2018). The relationship between test item format and gender achievement gaps on math and ELA tests in fourth and eighth grades. Educational Researcher, 47(5), 284294. https://doi.org/10.3102/0013189X18762105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Reardon, S. F., & Robinson, J. P. (2008). Patterns and trends in racial/ethnic and socioeconomic academic achievement gaps. In H. F. Ladd & E. B. Fiske (Eds.), Handbook of research in education finance and policy (pp. 497516). Routledge. https://doi.org/10.4324/9780203961063.ch28

    • Search Google Scholar
    • Export Citation
  • 76.

    Robinson, J. P., & Lubienski, S. T. (2011). The development of gender achievement gaps in mathematics and reading during elementary and middle school: Examining direct cognitive assessments and teacher ratings. American Educational Research Journal, 48(2), 268302. https://doi.org/10.3102/0002831210372249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Robinson-Cimpian, J. P., Lubienski, S. T., Ganley, C. M., & Copur-Gencturk, Y. (2014). Teachers’ perceptions of students’ mathematics proficiency may exacerbate early gender gaps in achievement. Developmental Psychology, 50(4), 12621281. https://doi.org/10.1037/a0035073

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Ryan, C. (2012). Field of degree and earnings by selected employment characteristics: 2011 (American Community Survey Brief 11-10). United State Census Bureau. https://files.eric.ed.gov/fulltext/ED537248.pdf

    • Search Google Scholar
    • Export Citation
  • 79.

    Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334370). National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • 80.

    Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. Zentralblatt Für Didaktik Der Mathematik, 29(3), 7580. https://doi.org/10.1007/s11858-997-0003-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Silver, E. A., Mesa, V. M., Morris, K. A., Star, J. R., & Benken, B. M. (2009). Teaching mathematics for understanding: An analysis of lessons submitted by teachers seeking NBPTS certification. American Educational Research Journal, 46(2), 501531. https://doi.org/10.3102/0002831208326559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 2029. https://doi.org/10.1016/j.lindif.2013.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Star, J. R. (2018). Flexibility in mathematical problem solving: The state of the field. In F.-J. Hsieh (Ed.), Proceedings of the 8th ICMI-East Asia Regional Conference on Mathematics Education (Vol. 1, pp. 1525). EARCOME.

    • Search Google Scholar
    • Export Citation
  • 84.

    Star, J. R., Newton, K., Pollack, C., Kokka, K., Rittle-Johnson, B., & Durkin, K. (2015). Student, teacher, and instructional characteristics related to students’ gains in flexibility. Contemporary Educational Psychology, 41, 198208. https://doi.org/10.1016/j.cedpsych.2015.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Sunde, P. B., Sunde, P., & Sayers, J. (2020). Sex differences in mental strategies for single-digit addition in the first years of school. Educational Psychology, 40(1), 82102. https://doi.org/10.1080/01443410.2019.1622652

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson.

  • 87.

    Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21(3), 216229. https://doi.org/10.2307/749375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Turner, C., & McClure, R. (2003). Age and gender differences in risk-taking behaviour as an explanation for high incidence of motor vehicle crashes as a driver in young males. Injury Control and Safety Promotion, 10(3), 123130. https://doi.org/10.1076/icsp.10.3.123.14560

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352402. https://doi.org/10.1037/a0028446

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2019). Elementary and middle school mathematics: Teaching developmentally (10th ed.). Pearson.

    • Search Google Scholar
    • Export Citation
  • 91.

    Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599604. https://doi.org/10.2466/pms.1978.47.2.599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Voyer, D. (2011). Time limits and gender differences on paper-and-pencil tests of mental rotation: A meta-analysis. Psychonomic Bulletin & Review, 18(2), 267277. https://doi.org/10.3758/s13423-010-0042-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250270. https://doi.org/10.1037/0033-2909.117.2.250

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Wehr-Flowers, E. (2006). Differences between male and female students’ confidence, anxiety, and attitude toward learning jazz improvisation. Journal of Research in Music Education, 54(4), 337349. https://doi.org/10.1177/002242940605400406

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Wilson, M. (2005). Constructing measures: An item response modeling approach. Routledge. https://doi.org/10.4324/9781410611697

  • 96.

    Winkelmann, H., van den Heuvel-Panhuizen, M., & Robitzsch, A. (2008). Gender differences in the mathematics achievements of German primary school students: Results from a German large-scale study. ZDM, 40(4), 601616. https://doi.org/10.1007/s11858-008-0124-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Wittmann, M. C., Flood, V. J., & Black, K. E. (2013). Algebraic manipulation as motion within a landscape. Educational Studies in Mathematics, 82(2), 169181. https://doi.org/10.1007/s10649-012-9428-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. R., & Ogbuehi, P. (2012). Improving mathematical problem solving in grades 4 through 8: A practice guide (NCEE 2012–4055). National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/MPS_PG_043012.pdf

    • Search Google Scholar
    • Export Citation
  • 99.

    Young, C. J., Levine, S. C., & Mix, K. S. (2018). The connection between spatial and mathematical ability across development. Frontiers in Psychology, 9(755). https://doi.org/10.3389/fpsyg.2018.00755

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Zhu, Z. (2007). Gender differences in mathematical problem solving patterns: A review of literature. International Education Journal, 8(2), 187203.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6606 2266 52
Full Text Views 1190 93 5
PDF Downloads 1406 137 5
EPUB Downloads 0 0 0