Inquiry and Gender Inequity in the Undergraduate Mathematics Classroom

View More View Less
  • 1 Virginia Tech
  • 2 Florida State University
  • 3 North Carolina State University
  • 4 Texas State University
  • 5 Western Kentucky University

Our field has generally reached a consensus that active-learning approaches improve student success; however, there is a need to explore the ways that particular instructional approaches affect various student groups. We examined the relationship between gender and student learning outcomes in one context: inquiry-oriented abstract algebra. Using hierarchical linear modeling, we analyzed content assessment data from 522 students. We detected a gender performance difference (with men outperforming women) in the inquiry-oriented classes that was not present in other classes. We take the differential result between men and women to be evidence of gender inequity in our context. In response to these findings, we present avenues for future research on the gendered experiences of students in such classes.

Contributor Notes

Estrella Johnson, Department of Mathematics, Virginia Tech, 225 Stanger St., Blacksburg, VA 24061; strej@vt.edu

Christine Andrews-Larson, School of Teacher Education, Florida State University, 1114 West Call Street, Tallahassee, FL 32306; cjlarson@fsu.edu

Karen Keene, Department of STEM Education, North Carolina State University, PO Box 7801, Raleigh, NC 27695; kakeene@ncsu.edu

Kathleen Melhuish, Department of Mathematics, Texas State University, 601 University Dr., San Marcos, TX 78666; melhuish@txstate.edu

Rachel Keller, Department of Mathematics, Virginia Tech, 225 Stanger St., Blacksburg, VA 24061; rakeller@vt.edu

Nicholas Fortune, Department of Mathematics, Western Kentucky University, 1906 College Heights Blvd #11078, Bowling Green, KY 42101; nicholas.fortune@wku.edu

Journal for Research in Mathematics Education
  • 1.

    Black, L. (2004). Differential participation in whole-class discussions and the construction of marginalised identities. Journal of Educational Enquiry, 5(1), 3454.

    • Search Google Scholar
    • Export Citation
  • 2.

    Boaler, J. (1997). Reclaiming school mathematics: The girls fight back. Gender and Education, 9(3), 285305. https://doi.org/10.1080/09540259721268

    • Search Google Scholar
    • Export Citation
  • 3.

    Boaler, J. (2002). The development of disciplinary relationships: Knowledge, practice, and identity in mathematics classrooms. For the Learning of Mathematics, 22(1), 4247.

    • Search Google Scholar
    • Export Citation
  • 4.

    Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3–4), 175190. https://doi.org/10.1080/00461520.1996.9653265

    • Search Google Scholar
    • Export Citation
  • 5.

    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.

  • 6.

    Du, X., & Kolmos, A. (2009). Increasing the diversity of engineering education—A gender analysis in a PBL context. European Journal of Engineering Education, 34(5), 425437. https://doi.org/10.1080/03043790903137577

    • Search Google Scholar
    • Export Citation
  • 7.

    Eddy, S. L., & Hogan, K. A. (2014). Getting under the hood: How and for whom does increasing course structure work? CBE—Life Sciences Education, 13(3), 453468. https://doi.org/10.1187/cbe.14-03-0050

    • Search Google Scholar
    • Export Citation
  • 8.

    Ellis, J., Fosdick, B. K., & Rasmussen, C. (2016). Women 1.5 times more likely to leave STEM pipeline after calculus compared to men: Lack of mathematical confidence a potential culprit. PLoS One, 11(7), e0157447. https://doi.org/10.1371/journal.pone.0157447

    • Search Google Scholar
    • Export Citation
  • 9.

    Fennema, E., Carpenter, T. P., Jacobs, V. R., Franke, M. L., & Levi, L. W. (1998). A longitudinal study of gender differences in young children’s mathematical thinking. Educational Researcher, 27(5), 611. https://doi.org/10.3102/0013189x027005006

    • Search Google Scholar
    • Export Citation
  • 10.

    Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 84108415. https://doi.org/10.1073/pnas.1319030111

    • Search Google Scholar
    • Export Citation
  • 11.

    Freudenthal, H. (1973). Mathematics as an educational task. Springer.

  • 12.

    Hayward, C. N., Kogan, M., & Laursen, S. L. (2016). Facilitating instructor adoption of inquiry-based learning in college mathematics. International Journal of Research in Undergraduate Mathematics Education, 2(1), 5982. https://doi.org/10.1007/s40753-015-0021-y

    • Search Google Scholar
    • Export Citation
  • 13.

    Hill, C., Corbett, C., & St. Rose, A. (2010). Why so few? Women in science, technology, engineering, and mathematics. American Association of University Women.

    • Search Google Scholar
    • Export Citation
  • 14.

    Hyde, J. S., & Jafeee, S. (1998). Perspectives from social and feminist psychology. Educational Researcher, 27(5), 1416. https://doi.org/10.3102/0013189X027005014

    • Search Google Scholar
    • Export Citation
  • 15.

    Johnson, E. (2013). Teachers’ mathematical activity in inquiry-oriented instruction. The Journal of Mathematical Behavior, 32(4), 761775. https://doi.org/10.1016/j.jmathb.2013.03.002

    • Search Google Scholar
    • Export Citation
  • 16.

    Johnson, E. M. S., & Larsen, S. P. (2012). Teacher listening: The role of knowledge of content and students. The Journal of Mathematical Behavior, 31(1), 117129. https://doi.org/10.1016/j.jmathb.2011.07.003

    • Search Google Scholar
    • Export Citation
  • 17.

    Karpowitz, C. F., Mendelberg, T., & Shaker, L. (2012). Gender inequality in deliberative participation. American Political Science Review, 106(3), 533547. https://doi.org/10.1017/S0003055412000329

    • Search Google Scholar
    • Export Citation
  • 18.

    Keller, R. E., Johnson, E., Peterson, V., & Fukawa-Connelly, T. (2017). Undergraduate abstract algebra: Is teaching different at ‘teaching’ colleges? In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, & S. Brown (Eds.), Proceedings of the 20th annual conference on Research in Undergraduate Mathematics Education (pp. 698706).

    • Export Citation
  • 19.

    Kuster, G., Johnson, E., Keene, K., & Andrews-Larson, C. (2018). Inquiry-oriented instruction: A conceptualization of the instructional principles. PRIMUS, 28(1), 1330. https://doi.org/ 10.1080/10511970.2017.1338807

    • Search Google Scholar
    • Export Citation
  • 20.

    Kwon, O. N., Rasmussen, C., & Allen, K. (2005). Students’ retention of mathematical knowledge and skills in differential equations. School Science and Mathematics, 105(5), 227239. https://doi.org/10.1111/j.1949-8594.2005.tb18163.x

    • Search Google Scholar
    • Export Citation
  • 21.

    Larsen, S., Johnson, E., & Bartlo, J. (2013). Designing and scaling up an innovation in abstract algebra. The Journal of Mathematical Behavior, 32(4), 693711. https://doi.org/10.1016/j.jmathb.2013.02.011

    • Search Google Scholar
    • Export Citation
  • 22.

    Larsen, S., Johnson, E., & Weber, K. (Eds.). (2013). The Teaching Abstract Algebra for Understanding Project: Designing and scaling up a curriculum innovation. Journal of Mathematical Behavior, 32(4), 691790.

    • Search Google Scholar
    • Export Citation
  • 23.

    Laursen, S. L., Hassi, M.-L., Kogan, M., & Weston, T. J. (2014). Benefits for women and men of inquiry-based learning in college mathematics: A multi-institution study. Journal for Research in Mathematics Education, 45(4), 406418. https://doi.org/10.5951/jresematheduc.45.4.0406

    • Search Google Scholar
    • Export Citation
  • 24.

    Laursen, S. L., & Rasmussen, C. (2019). I on the prize: Inquiry approaches in undergraduate mathematics. International Journal of Research in Undergraduate Mathematics Education, 5(1), 129146. https://doi.org/10.1007/s40753-019-00085-6

    • Search Google Scholar
    • Export Citation
  • 25.

    National Center for Education Statistics. (2018). Integrated post-secondary data system [Survey data file]. Retrieved from https://nces.ed.gov/ipeds/

    • Export Citation
  • 26.

    Rasmussen, C., Kwon, O. N., Allen, K., Marrongelle, K., & Burtch, M. (2006). Capitalizing on advances in mathematics and K-12 mathematics education in undergraduate mathematics: An inquiry-oriented approach to differential equations. Asia Pacific Education Review, 7(1), 8593. https://doi.org/10.1007/BF03036787

    • Search Google Scholar
    • Export Citation
  • 27.

    Rasmussen, C., Wawro, M., & Zandieh, M. (2015). Examining individual and collective level mathematical progress. Educational Studies in Mathematics, 88(2), 259281. https://doi.org/10.1007/s10649-014-9583-x

    • Search Google Scholar
    • Export Citation
  • 28.

    Singer, S. R., Nielsen, N. R., & Schweingruber, H. A. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. National Academies Press.

    • Search Google Scholar
    • Export Citation
  • 29.

    Smith, J. L., Andrews-Larson, C., Reinholz, D., Stone-Johnstone, A., & Mullins, B. (2019). Examined inquiry-oriented instructional moves with an eye toward gender equity. In A. Weinberg, D. Moore-Russo, H. Soto, & M. Wawro (Eds.), Proceedings of the 22nd annual conference on Research in Undergraduate Mathematics Education (pp. 10351041).

    • Export Citation
  • 30.

    Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2nd ed.). Sage.

    • Search Google Scholar
    • Export Citation
  • 31.

    Speer, N. M., & Wagner, J. F. (2009). Knowledge needed by a teacher to provide analytic scaffolding during undergraduate mathematics classroom discussions. Journal for Research in Mathematics Education, 40(5), 530562.

    • Search Google Scholar
    • Export Citation
  • 32.

    Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on undergraduates in science, mathematics, engineering, and technology: A meta-analysis. Review of Educational Research, 69(1), 2151. https://doi.org/10.3102/00346543069001021

    • Search Google Scholar
    • Export Citation
  • 33.

    Steele, F. (2008). Module 5: Introduction to multilevel modelling. LEMMA VLE, Centre for Multilevel Modelling. Retrieved from http://www.cmm.bris.ac.uk/lemma/course/view.php?id=13

    • Export Citation
  • 34.

    Wagner, J. F., Speer, N. M., & Rossa, B. (2007). Beyond mathematical content knowledge: A mathematician’s knowledge needed for teaching an inquiry-oriented differential equations course. The Journal of Mathematical Behavior, 26(3), 247266. https://doi.org/10.1016/j.jmathb.2007.09.002

    • Search Google Scholar
    • Export Citation
  • 35.

    Walshaw, M., & Anthony, G. (2008). The teacher’s role in classroom discourse: A review of recent research into mathematics classrooms. Review of Educational Research, 78(3), 516551. https://doi.org/10.3102/0034654308320292

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 128 128 83
Full Text Views 31 31 15
PDF Downloads 31 31 15
EPUB Downloads 0 0 0