Emma’s Negotiation of Number: Implicit Intensive Intervention

View More View Less
  • 1 North Carolina State University
  • 2 Texas State University

We investigated the extent to which one elementary school child with ­working-memory differences made sense of number as a composite unit and advanced her reasoning. Through ongoing and retrospective analysis of eight teaching-experiment sessions, we uncovered four shifts in the child’s real-time negotiation of number over time: (a) initial “2s” and symmetry to consider counting on, (b) participatory awareness of 10 and use of algorithmic knowledge, (c) break apart and growing anticipation of tacit counting, and (d) advanced participatory tacit double counting. The results suggest a possible link between the child’s participatory knowledge and the extent to which her enacted activity met her goals for solving the problem more than her current “knowing.” The implications regarding a possible proof of concept toward implicit, intensive instruction are shared.

Footnotes

This work was supported by a grant from the National Science Foundation, DRK-12, Grant 1708327. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Contributor Notes

Jessica Hunt, Department of Teacher Education and Learning Sciences, North Carolina State University, 2310 Stinson Drive, Raleigh, NC, 27695; jhunt5@ncsu.edu

Juanita Silva, Department of Curriculum and Instruction, Texas State University, 601 University Drive, San Marcos, TX, 78666; jms572@txstate.edu

Journal for Research in Mathematics Education
  • 1.

    Baroody, A. J., Brach, C. , & Tai, Y.-C. (2006). The application and development of an addition goal sketch. Cognition and Instruction, 24(1), 123170. https://doi.org/10.1207/s1532690xci2401_3

    • Search Google Scholar
    • Export Citation
  • 2.

    Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141178. https://doi.org/10.1207/s15327809jls0202_2

    • Search Google Scholar
    • Export Citation
  • 3.

    Bruner, J. (1999). Infancy and culture: A story. In S. Chaiklin, M. Hedegaard , & U. J. Jensen (Eds.), Activity theory and social practice: Cultural-historical approaches (pp. 225234). Aarhus University Press.

    • Search Google Scholar
    • Export Citation
  • 4.

    Butterworth, B., Varma, S. , & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332(6033), 10491053. https://doi.org/10.1126/science.1201536

    • Search Google Scholar
    • Export Citation
  • 5.

    Carpenter, T. P. , & Moser, J. M. (1984). The acquisition of addition and subtraction concepts in grades one through three. Journal for Research in Mathematics Education, 15(3), 179202. https://doi.org/10.2307/748348

    • Search Google Scholar
    • Export Citation
  • 6.

    Charmaz, K. (2011). Grounded theory methods in social justice research. In N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE handbook of qualitative research (4th ed., pp. 359380). SAGE.

    • Search Google Scholar
    • Export Citation
  • 7.

    Compton, D. L., Fuchs, L. S., Fuchs, D., Lambert, W. , & Hamlett, C. (2012). The cognitive and academic profiles of reading and mathematics learning disabilities. Journal of Learning Disabilities, 45(1), 7995. https://doi.org/10.1177/0022219410393012

    • Search Google Scholar
    • Export Citation
  • 8.

    Corbin, J. M. , & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology, 13(1), 321. https://doi.org/10.1007/BF00988593

    • Search Google Scholar
    • Export Citation
  • 9.

    Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches (2nd ed.). SAGE.

  • 10.

    DiSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.), Constructivism in the computer age (pp. 4970). Lawrence Erlbaum Associates.

    • Search Google Scholar
    • Export Citation
  • 11.

    Flavell, J. H. (1996). Piaget’s legacy. Psychological Science, 7(4), 200203. https://doi.org/10.1111/j.1467-9280.1996.tb00359.x

  • 12.

    Fuson, K. C. (1982). An analysis of the counting-on solution procedure in addition. In T. P. Carpenter, J. M. Moser , & T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 6781). Lawrence Erlbaum Associates.

    • Search Google Scholar
    • Export Citation
  • 13.

    Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P. , & Flojo, J. (2009). Mathematics instruction for students with learning disabilities: A meta-analysis of instructional components. Review of Educational Research, 79(3), 12021242. https://doi.org/10.3102/0034654309334431

    • Search Google Scholar
    • Export Citation
  • 14.

    Ginsburg, H. P. (1997). Entering the child’s mind: The clinical interview in psychological research and practice. Cambridge University Press.

    • Search Google Scholar
    • Export Citation
  • 15.

    Hord, C., Tzur, R., Xin, Y. P., Si, L., Kenney, R. H. , & Woodward, J. (2016). Overcoming a 4th grader’s challenges with working-memory via constructivist-based pedagogy and strategic scaffolds: Tia’s solutions to challenging multiplicative tasks. The Journal of Mathematical Behavior, 44, 1333. https://doi.org/10.1016/j.jmathb.2016.09.002

    • Search Google Scholar
    • Export Citation
  • 16.

    Hunt, J. H. (2018, June 23–27). Navigating disability in intensive instruction: Learning complexity and small environments [Paper presentation]. 13th International Conference of the Learning Sciences, London, United Kingdom.

  • 17.

    Jeltova, I., Birney, D., Fredine, N., Jarvin, L., Sternberg, R. J. , & Grigorenko, E. L. (2011). Making instruction and assessment responsive to diverse students’ progress: Group-administered dynamic assessment in teaching mathematics. Journal of Learning Disabilities, 44(4), 381395. https://doi.org/10.1177/0022219411407868

    • Search Google Scholar
    • Export Citation
  • 18.

    Leech, N. L. , & Onwuegbuzie, A. J. (2007). An array of qualitative data analysis tools: A call for data analysis triangulation. School Psychology Quarterly, 22(4), 557584. https://doi.org/ 10.1037/1045-3830.22.4.557

    • Search Google Scholar
    • Export Citation
  • 19.

    Mazzocco, M. M. M. , & Devlin, K. T. (2008). Parts and ‘holes’: Gaps in rational number sense among children with vs. without mathematical learning disabilities. Developmental Science, 11(5), 681691. https://doi.org/10.1111/j.1467-7687.2008.00717.x

    • Search Google Scholar
    • Export Citation
  • 20.

    McCloskey, M. (2007). Quantitative literacy and developmental dyscalculias. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 415429). Paul H. Brookes.

    • Search Google Scholar
    • Export Citation
  • 21.

    Muñoz-Sandoval, A. F., Woodcock, R. W., McGrew, K. S. , & Mather, N. (2005). Batería III Woodcock-Muñoz. Riverside Publishing.

  • 22.

    Murphy, M. M., Mazzocco, M. M. M., Hanich, L. B. , & Early, M. C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40(5), 458478. https://doi.org/ 10.1177/00222194070400050901

    • Search Google Scholar
    • Export Citation
  • 23.

    National Academy of Sciences, National Academy of Engineering, and Institute of Medicine of the National Academies. (2007). Rising above the gathering storm: Energizing and employing America for a brighter economic future. The National Academies Press. https://doi.org/10.17226/11463

    • Search Google Scholar
    • Export Citation
  • 24.

    National Center for Education Statistics. (2009). NAEP questions. http://www.nces.gov/nationsreportcard/itmrls

    • Export Citation
  • 25.

    National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. U.S. Department of Education.

    • Search Google Scholar
    • Export Citation
  • 26.

    Olive, J. (2001). Children’s number sequences: An explanation of Steffe’s constructs and an extrapolation to rational numbers of arithmetic. The Mathematics Educator, 11(1), 49.

    • Search Google Scholar
    • Export Citation
  • 27.

    Opfer, J. E. , & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55(3), 169195. https://doi.org/10.1016/j.cogpsych.2006.09.002

    • Search Google Scholar
    • Export Citation
  • 28.

    Piaget, J. (1972). The principles of genetic epistemology. Routledge & Kegan Paul.

  • 29.

    Piaget, J. (1980). Schemes of action and language learning. In M. Piattelli-Palmarini (Ed.), Language and learning: The debate between Jean Piaget and Noam Chomsky (pp. 163167). Harvard University Press.

    • Search Google Scholar
    • Export Citation
  • 30.

    Powell, A. B., Francisco, J. M. , & Maher, C. A. (2003). An analytical model for studying the development of learners’ mathematical ideas and reasoning using videotape data. The Journal of Mathematical Behavior, 22(4), 405435. https://doi.org/10.1016/j.jmathb.2003.09.002

    • Search Google Scholar
    • Export Citation
  • 31.

    Risley, R., Hodkowski, N. M. , & Tzur, R. (2016). Devin’s construction of a multiplicative double counting scheme: Dual anticipation of start and stop. In M. B. Wood, E. E. Turner, M. Civil , & J. A. Eli (Eds.), Proceedings of the Thirty-Eighth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 164170). Tucson: The University of Arizona.

    • Search Google Scholar
    • Export Citation
  • 32.

    Rodrigues, J., Dyson, N. I., Hansen, N. , & Jordan, N. C. (2016). Preparing for algebra by building fraction sense. Teaching Exceptional Children, 49(2), 134141. https://doi.org/10.1177/0040059916674326

    • Search Google Scholar
    • Export Citation
  • 33.

    Rose, L. T. , & Fischer, K. W. (2009). Dynamic development: A neo-Piagetian approach. In U. Müller (Ed.), The Cambridge companion to Piaget (pp. 400422). New York, NY: Cambridge University Press. https://doi.org/10.1017/ccol9780521898584.018

    • Search Google Scholar
    • Export Citation
  • 34.

    Saldaña, J. (2015). The coding manual for qualitative researchers. SAGE.

  • 35.

    Siegler, R. S. (2007). Cognitive variability. Developmental Science, 10(1), 104109. https://doi.org/10.1111/j.1467-7687.2007.00571.x

    • Search Google Scholar
    • Export Citation
  • 36.

    Simon, M. A. , & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 91104. https://doi.org/10.1207/s15327833mtl0602_2

    • Search Google Scholar
    • Export Citation
  • 37.

    Steffe, L. P. (1995). Alternative epistemologies: An educator’s perspective. In L. P. Steffe & J. Gale (Eds.), Constructivism in education (pp. 489523). Lawrence Erlbaum Associates.

    • Search Google Scholar
    • Export Citation
  • 38.

    Steffe, L. P. (2002). A new hypothesis concerning children’s fraction knowledge. Journal of Mathematical Behavior, 102, 141. https://doi.org/10.1016/S0732-3123(02)00075-5

    • Search Google Scholar
    • Export Citation
  • 39.

    Steffe, L. P. , & Cobb, P. (1988). Lexical and syntactical meanings Tyone, Scenetra, and Jason. In L. P. Steffe & P. Cobb (Eds.), Construction of arithmetical meanings and strategies (pp. 148234). Springer. https://doi.org/10.1007/978-1-4612-3844-7_6

    • Search Google Scholar
    • Export Citation
  • 40.

    Steffe, L. P. , & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267306). Lawrence Erlbaum Associates.

    • Search Google Scholar
    • Export Citation
  • 41.

    Strauss, A. , & Corbin, J. (1994). Grounded theory methodology: An overview. In N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE handbook of qualitative research (pp. 273285). SAGE.

    • Search Google Scholar
    • Export Citation
  • 42.

    Tzur, R. (2007). Fine grain assessment of students’ mathematical understanding: Participatory and anticipatory stages in learning a new mathematical conception. Educational Studies in Mathematics, 66(3), 273291. https://doi.org/10.1007/s10649-007-9082-4

    • Search Google Scholar
    • Export Citation
  • 43.

    Tzur, R., Johnson, H. L., McClintock, E., Kenney, R. H., Xin, Y. P., Si, L. , Woordward, J., Hord, C., & Jin, X. (2013). Distinguishing schemes and tasks in children’s development of multiplicative reasoning. PNA, 7(3), 85101.

    • Search Google Scholar
    • Export Citation
  • 44.

    Tzur, R., Johnson, H. L., McClintock, E. , & Risley, R. (2012). Culturally mathematically relevant pedagogy (CMRP): Fostering urban English language learners’ multiplicative reasoning. In L. R. Van Zoest, J.-J. Lo , & J. L. Kratky (Eds.), Proceedings of the Thirty-Fourth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 829836). Kalamazoo: Western Michigan University.

    • Search Google Scholar
    • Export Citation
  • 45.

    Tzur, R. , & Lambert, M. A. (2011). Intermediate participatory stages as zone of proximal development correlate in constructing counting-on: A plausible conceptual source for children’s transitory “regress” to counting-all. Journal for Research in Mathematics Education, 42(5), 418450. https://doi.org/10.5951/jresemtheduc.42.5.0418

    • Search Google Scholar
    • Export Citation
  • 46.

    Ulrich, C. , & Wilkins, J. L. M. (2017). Using written work to investigate stages in sixth-grade students’ construction and coordination of units. International Journal of STEM Education, 4(1), 23. https://doi.org/10.1186/s40594-017-0085-0

    • Search Google Scholar
    • Export Citation
  • 47.

    von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. London, United Kingdom: Routledge-Falmer. https://doi.org/10.4324/9780203454220

    • Search Google Scholar
    • Export Citation
  • 48.

    Vukovic, R. K. (2012). Mathematics difficulty with and without reading difficulty: Findings and implications from a four-year longitudinal study. Exceptional Children, 78(3), 280300. https://doi.org/10.1177/001440291207800302

    • Search Google Scholar
    • Export Citation
  • 49.

    Woodward, J. (2004). Mathematics education in the United States: Past to present. Journal of Learning Disabilities, 37(1), 1631. https://doi.org/10.1177/00222194040370010301

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 182 182 24
Full Text Views 75 75 9
PDF Downloads 69 69 9
EPUB Downloads 0 0 0