Proof as a Cluster Category

To design and improve instruction in mathematical proof, mathematics educators require an adequate definition of proof that is faithful to mathematical practice and relevant to pedagogical situations. In both mathematics education and the philosophy of mathematics, mathematical proof is typically defined as a type of justification that satisfies a collection of necessary and sufficient conditions. We argue that defining the proof category in this way renders the definition incapable of accurately capturing how category membership is determined. We propose an alternative account—proof as a cluster category—and demonstrate its potential for addressing many of the intractable challenges inherent in previous accounts. We will also show that adopting the cluster account has utility for how proof is researched and taught.

Footnotes

We would like to thank Kristen Bieda, Paul Dawkins, Matthew Inglis, and the anonymous reviewers for their very helpful comments on earlier drafts of this manuscript.

Journal for Research in Mathematics Education
  • 1.

    AberdeinA (2009). Mathematics and argumentation. Foundations of Science14(1) 18. doi:https://doi.org/10.1007/s10699-008-9158-3

  • 2.

    AlcockL & SimpsonA (2002). Definitions: Dealing with categories mathematically. For the Learning of Mathematics22(2) 2834.

  • 3.

    AlcockL & WeberK (2010). Referential and syntactic approaches to proving: Case studies from a transition-to-proof course. In HittFHoltonD & ThompsonPW (Eds.) Research in Collegiate Mathematics Education VII (pp. 93114). Providence, RI: American Mathematical Society.

    • Search Google Scholar
    • Export Citation
  • 4.

    ArzarelloF (2007). The proof in the 20th century: From Hilbert to automatic theorem proving. In BoeroP (Ed.) Theorems in school: From history epistemology and cognition to classroom practice (pp. 4364). Rotterdam, the Netherlands: Sense.

    • Search Google Scholar
    • Export Citation
  • 5.

    AzzouniJ (2004). The derivation-indicator view of mathematical practice. Philosophia Mathematica12(2) 81106. doi:https://doi.org/10.1093/philmat/12.2.81

    • Search Google Scholar
    • Export Citation
  • 6.

    BalacheffN (2008). The role of the researcher’s epistemology in mathematics education: An essay on the case of proof. ZDM—The International Journal on Mathematics Education40(3) 501512. doi:https://doi.org/10.1007/s11858-008-0103-2

    • Search Google Scholar
    • Export Citation
  • 7.

    BerndtBC & OnoK (2001). Ramanujan’s unpublished manuscript on the partition and tau functions with proofs and commentary. In FoataD & HanGN (Eds.) The Andrews festschrift: Seventeen papers on classical number theory and combinatorics (pp. 39110). Berlin, Germany: Springer. doi:https://doi.org/10.1007/978-3-642-56513-7_3

    • Search Google Scholar
    • Export Citation
  • 8.

    BerryD (2018). Proof and the virtues of shared enquiry. Philosophia Mathematica26(1) 112130. doi:https://doi.org/10.1093/philmat/nkw022

    • Search Google Scholar
    • Export Citation
  • 9.

    BiedaKN & LepakJ (2014). Are you convinced? Middle-grade students’ evaluations of mathematical arguments. School Science and Mathematics114(4) 166177. doi:https://doi.org/10.1111/ssm.12066

    • Search Google Scholar
    • Export Citation
  • 10.

    BiletzkiA & MatarA (2018). Ludwig Wittgenstein. In ZaltaE (Ed.) Stanford encyclopedia of philosophy. Retrieved from https://plato.stanford.edu/entries/wittgenstein/

    • Export Citation
  • 11.

    BrownJR (1998). What is a definition? Foundations of Science3(1) 111132. doi:https://doi.org/10.1023/A:1009690306330

  • 12.

    BuldtBLöweB & MüllerT (2008). Towards a new epistemology of mathematics. Erkenntnis68(3) 309329. doi:https://doi.org/10.1007/s10670-008-9101-6

    • Search Google Scholar
    • Export Citation
  • 13.

    CadwalladerOlskerT (2011). What do we mean by mathematical proof? Journal of Humanistic Mathematics1(1) 3360. doi:https://doi.org/10.5642/jhummath.201101.04

    • Search Google Scholar
    • Export Citation
  • 14.

    ChaitinGJ (1982). Gödel’s theorem and information. International Journal of Theoretical Physics21(12) 941954. doi:https://doi.org/10.1007/BF02084159

    • Search Google Scholar
    • Export Citation
  • 15.

    CirilloMKoskoKWNewtonJStaplesM & WeberK (2015). Conceptions and consequences of what we call argumentation, justification, and proof. In BartellTGBiedaKNPutnamRTBradfieldK & DominguezH (Eds.) Proceedings of the thirty-seventh annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education: Critical responses to enduring challenges in mathematics education (pp. 13431351). East Lansing: Michigan State University.

    • Search Google Scholar
    • Export Citation
  • 16.

    DavisPJ & HershR (1981). The mathematical experience. New York, NY: Penguin.

  • 17.

    DawkinsPC & WeberK (2017). Values and norms of proof for mathematicians and students. Educational Studies in Mathematics95(2) 123142. doi:https://doi.org/10.1007/s10649-016-9740-5

    • Search Google Scholar
    • Export Citation
  • 18.

    DawsonJWJr (2006). Why do mathematicians re-prove theorems? Philosophia Mathematica14(3) 269286. doi:https://doi.org/10.1093/philmat/nkl009

    • Search Google Scholar
    • Export Citation
  • 19.

    de VilliersM (1990). The role and function of proof in mathematics. Pythagoras241724.

  • 20.

    de VilliersM (2004). The role and function of quasi-empirical methods in mathematics. Canadian Journal of Science Mathematics and Technology Education4(3) 397418. doi:https://doi.org/10.1080/14926150409556621

    • Search Google Scholar
    • Export Citation
  • 21.

    DevlinK (2003). When is a proof? Devlin’s Angle . Retrieved from https://www.maa.org/external_archive/devlin/devlin_06_03.html.

    • Export Citation
  • 22.

    DreyfusT & HadasN (1996). Proof as answer to the question why. Zentralblatt fur Didaktik der Mathematik28(1) 15.

  • 23.

    DuvalR (2007). Cognitive functioning and the understanding of mathematical processes of proof. In BoeroP (Ed.) Theorems in school: From history epistemology and cognition to classroom practice (pp. 137161). Rotterdam, the Netherlands: Sense.

    • Search Google Scholar
    • Export Citation
  • 24.

    FallisD (1996). Mathematical proof and the reliability of DNA evidence. American Mathematical Monthly103(6) 491497. doi:https://doi.org/10.1080/00029890.1996.12004772

    • Search Google Scholar
    • Export Citation
  • 25.

    FallisD (1997). The epistemic status of probabilistic proof. The Journal of Philosophy94(4) 165186. doi:https://doi.org/10.2307/2940964

    • Search Google Scholar
    • Export Citation
  • 26.

    FallisD (2002). What do mathematicians want? Probabilistic proofs and the epistemic goals of mathematicians. Logique et Analyse45(179–180) 373388.

    • Search Google Scholar
    • Export Citation
  • 27.

    FefermanS (2012). And so on…: Reasoning with infinite diagrams. Synthese186(1) 371386. doi:https://doi.org/10.1007/s11229-011-9985-6

    • Search Google Scholar
    • Export Citation
  • 28.

    GautB (2000). “Art” as a cluster concept. In CarrollN (Ed.) Theories of art today (pp. 2544). Madison: The University of Wisconsin Press.

    • Search Google Scholar
    • Export Citation
  • 29.

    GuptaA (2015). Definitions. In ZaltaE (Ed.) Stanford encyclopedia of philosophy archive. Retrieved from https://plato.stanford.edu/archives/sum2015/entries/definitions/

    • Export Citation
  • 30.

    HannaG (1990). Some pedagogical aspects of proof. Interchange21(1) 613. doi:https://doi.org/10.1007/BF01809605

  • 31.

    HarelG & SowderL (1998). Students’ proof schemes: Results from exploratory studies. In SchoenfeldAHKaputJ & DubinskyE (Eds.) Research in collegiate mathematics education III (pp. 234283). Providence, RI: American Mathematical Society.

    • Search Google Scholar
    • Export Citation
  • 32.

    HarelG & SowderL (2007). Toward comprehensive perspectives on the learning and teaching of proof. In LesterFKJr. (Ed.) Second handbook of research on mathematics teaching and learning (pp. 805842). Charlotte, NC: Information Age.

    • Search Google Scholar
    • Export Citation
  • 33.

    HarelG & WeberK (2018). Deductive reasoning in mathematics education. In LermanS (Ed.) Encyclopedia of mathematics education (pp. 18). Cham, Switzerland: Springer. doi:https://doi.org/10.1007/978-3-319-77487-9_43-6

    • Search Google Scholar
    • Export Citation
  • 34.

    HealyL & HoylesC (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education31(4) 396428. doi:https://doi.org/10.2307/749651

    • Search Google Scholar
    • Export Citation
  • 35.

    HerbstP & BalacheffN (2009). Proving and knowing in public: The nature of proof in a classroom. In StylianouDABlantonML & KnuthEJ (Eds.) Teaching and learning proof across the grades: A K-16 perspective (pp. 4064). New York, NY: Routledge.

    • Search Google Scholar
    • Export Citation
  • 36.

    HerbstP & BrachC (2006). Proving and doing proofs in high school geometry classes: What is it that is going on for students? Cognition and Instruction24(1) 73122. doi:https://doi.org/10.1207/s1532690xci2401_2

    • Search Google Scholar
    • Export Citation
  • 37.

    HoylesC & JonesK (1998). Proof in dynamic geometry contexts. In MammanaC & VillaniV (Eds.) Perspectives on the teaching of geometry for the 21st century: An ICMI study (pp. 121127). Dordrecht, the Netherlands: Springer.

    • Search Google Scholar
    • Export Citation
  • 38.

    InglisM & AlcockL (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education43(4) 358–390. doi:https://doi.org/10.5951/jresematheduc.43.4.0358

    • Search Google Scholar
    • Export Citation
  • 39.

    KnuthEJ (2002). Secondary school mathematics teachers’ conceptions of proof. Journal for Research in Mathematics Education33(5) 379405. doi:https://doi.org/10.2307/4149959

    • Search Google Scholar
    • Export Citation
  • 40.

    KoYY & KnuthEJ (2013). Validating proofs and counterexamples across content domains: Practices of importance for mathematics majors. The Journal of Mathematical Behavior32(1) 2035. doi:https://doi.org/10.1016/j.jmathb.2012.09.003

    • Search Google Scholar
    • Export Citation
  • 41.

    KrantzSG (2011). The proof is in the pudding: The changing nature of mathematical proof. New York, NY: Springer.

  • 42.

    LakatosI (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge, UK: Cambridge University Press.

  • 43.

    LakatosI (1978). The methodology of scientific research programmes. Cambridge, UK: Cambridge University Press.

  • 44.

    LakoffG (1987). Women fire and dangerous things: What categories reveal about the mind. Chicago, IL: University of Chicago Press.

  • 45.

    LarvorB (2012). How to think about informal proofs. Synthese187(2) 715730. doi:https://doi.org/10.1007/s11229-011-0007-5

  • 46.

    LarvorB (2019). From Euclidean geometry to knots and nets. Synthese196(7) 27152736. doi:https://doi.org/10.1007/s11229-017-1558-x

    • Search Google Scholar
    • Export Citation
  • 47.

    Mac LaneS (1986). Mathematics: Form and function. New York, NY: Springer.

  • 48.

    Mamona-DownsJ & DownsM (2010). Necessary realignments from mental argumentation to proof presentation. In Durand-GuerrierVSoury-LavergneS & ArzarelloF (Eds.) Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 23362345). Lyon, France: Institut National de Recherche Pédagogique.

    • Search Google Scholar
    • Export Citation
  • 49.

    MargolisE & LaurenceS (2019). Concepts. In ZaltaE (Ed.) Stanford Encyclopedia of Philosophy. Retrieved from https://plato.stanford.edu/entries/concepts/

    • Export Citation
  • 50.

    Mejía-RamosJP (2008). The construction and evaluation of arguments in undergraduate mathematics: A theoretical and a longitudinal multiple case study (Unpublished doctoral dissertation). University of Warwick Coventry England.

  • 51.

    MontañoU (2012). Ugly mathematics: Why do mathematicians dislike computer-assisted proofs? The Mathematical Intelligencer34(4) 2128. doi:https://doi.org/10.1007/s00283-012-9325-9

    • Search Google Scholar
    • Export Citation
  • 52.

    MooreGH (2013). Zermelo’s axiom of choice: Its origins development & influence. Mineola, NY: Dover.

  • 53.

    National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

  • 54.

    National Governors Association Center for Best Practices & Council of Chief State School Officers. (2012). Common Core State Standards Initiative: Standards for mathematical practice. Retrieved from http://www.corestandards.org/Math/Practice

  • 55.

    PaseauA (2011). Mathematical instrumentalism, Gödel’s theorem, and inductive evidence. Studies in History and Philosophy of Science Part A42(1) 140149. doi:https://doi.org/10.1016/j.shpsa.2010.11.030

    • Search Google Scholar
    • Export Citation
  • 56.

    RavY (1999). Why do we prove theorems? Philosophia Mathematica7(1) 5–41. doi:https://doi.org/10.1093/philmat/7.1.5

  • 57.

    RavY (2007). A critique of a formal-mechanist version of the justification of arguments in mathematicians’ proof practices. Philosophia Mathematica15(3) 291320. doi:https://doi.org/10.1093/philmat/nkm023

    • Search Google Scholar
    • Export Citation
  • 58.

    ReidDA (2001). Proof proofs proving and probing: Research related to proof. Retrieved from http://www.acadiau.ca/∼dreid/publications/proof/proof.htm

  • 59.

    ReidDA & KnippingC (2010). Proof in mathematics education: Research learning and teaching. Rotterdam, the Netherlands: Sense.

  • 60.

    RotaGC (1997). The phenomenology of mathematical proof. Synthese111(2) 183196. doi:https://doi.org/10.1023/A:1004974521326

  • 61.

    SeldenA & SeldenJ (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education34(1) 436. doi:https://doi.org/10.2307/30034698

    • Search Google Scholar
    • Export Citation
  • 62.

    StaplesMEBartloJ & ThanheiserE (2012). Justification as a teaching and learning practice: Its (potential) multifaceted role in middle grades mathematics classrooms. The Journal of Mathematical Behavior31(4) 447462. doi:https://doi.org/10.1016/j.jmathb.2012.07.001

    • Search Google Scholar
    • Export Citation
  • 63.

    StylianidesAJ (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education38(3) 289–321. doi:https://doi.org/10.2307/30034869

    • Search Google Scholar
    • Export Citation
  • 64.

    StylianidesAJBiedaKN & MorselliF (2016). Proof and argumentation in mathematics education research. In GutiérrezALederGG & BoeroP (Eds.) The second handbook of research on the psychology of mathematics education (pp. 315351). Rotterdam, the Netherlands: Sense. doi:https://doi.org/10.1007/978-94-6300-561-6_9

    • Search Google Scholar
    • Export Citation
  • 65.

    StylianidesGJStylianidesAJ & WeberK (2017). Research on the teaching and learning of proof: Taking stock and moving forward. In CaiJ (Ed.) Compendium for research in mathematics education (pp. 237266). Reston, VA: National Council of Teachers of Mathematics.

    • Search Google Scholar
    • Export Citation
  • 66.

    TanswellFS (2016). Saving proof from paradox: Gödel’s paradox and the inconsistency of informal mathematics. In AndreasH & VerdéeP (Eds.) Logical studies of paraconsistent reasoning in science and mathematics (pp. 159173). Cham, Switzerland: Springer. doi:https://doi.org/10.1007/978-3-319-40220-8_11

    • Search Google Scholar
    • Export Citation
  • 67.

    TymoczkoT (1979). The four-color problem and its philosophical significance. The Journal of Philosophy76(2) 5783. doi:https://doi.org/10.2307/2025976

    • Search Google Scholar
    • Export Citation
  • 68.

    WeberK (2008). How mathematicians determine if an argument is a valid proof. Journal for Research in Mathematics Education39(4) 431459.

    • Search Google Scholar
    • Export Citation
  • 69.

    WeberK (2009). Theorems in school: From history, epistemology, and cognition to classroom practice. Mathematical Thinking and Learning11(4) 289294. doi:https://doi.org/10.1080/10986060903253202

    • Search Google Scholar
    • Export Citation
  • 70.

    WeberK (2010). Mathematics majors’ perceptions of conviction, validity, and proof. Mathematical Thinking and Learning12(4) 306336. doi:https://doi.org/10.1080/10986065.2010.495468

    • Search Google Scholar
    • Export Citation
  • 71.

    WeberK & CzocherJ (2019). On mathematicians’ disagreements on what constitutes a proof. Research in Mathematics Education. doi:https://doi.org/10.1080/14794802.2019.1585936

    • Search Google Scholar
    • Export Citation
  • 72.

    WeberKInglisM & Mejia-RamosJP (2014). How mathematicians obtain conviction: Implications for mathematics instruction and research on epistemic cognition. Educational Psychologist49(1) 3658. doi:https://doi.org/10.1080/00461520.2013.865527

    • Search Google Scholar
    • Export Citation
  • 73.

    WeitzM (1956). The role of theory in aesthetics. The Journal of Aesthetics and Art Criticism15(1) 2735. doi:https://doi.org/10.2307/427491

    • Search Google Scholar
    • Export Citation
  • 74.

    Williams-PierceCPierELWalkingtonCBoncoddoRClintonVAlibaliMW & NathanMJ (2017). What we say and how we do: Action, gesture, and language in proving. Journal for Research in Mathematics Education48(3) 248–260. doi:https://doi.org/10.5951/jresematheduc.48.3.0248

    • Search Google Scholar
    • Export Citation
  • 75.

    WittgensteinL (2009). Philosophical investigations (4th ed.) (AnscomeGEMHackerPMS & SchulteJoachim Trans.) Chichester, UK: Wiley-Blackwell. (Original work published 1963)

    • Search Google Scholar
    • Export Citation
  • 76.

    ZazkisDWeberK & Mejía-RamosJP (2016). Bridging the gap between graphical arguments and verbal-symbolic proofs in a real analysis context. Educational Studies in Mathematics93(2) 155173. doi:https://doi.org/10.1007/s10649-016-9698-3

    • Search Google Scholar
    • Export Citation
  • 77.

    ZeilbergerD (1993). Theorems for a price: Tomorrow’s semi-rigorous mathematical culture. Notices of the American Mathematical Society40978981.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 168 168 8
Full Text Views 108 108 8
PDF Downloads 76 76 5
EPUB Downloads 0 0 0