Study Habits and Attainment in Undergraduate Mathematics: A Social Network Analysis

View More View Less
  • 1 Loughborough University
  • 2 Swinburne University of Technology
  • 3 University of Nottingham

In this article, we argue that although mathematics educators are concerned about social issues, minimal attention has been paid to student–student interactions outside the classroom. We discuss social network analysis as a methodology for studying such interactions in the context of an undergraduate course. We present results on the questions: Who studies with whom? What are students’ study habits, and are these systematically related to the habits of those with whom they interact? Do individual and collaborative study habits predict attainment? We discuss the implications of these findings for research on undergraduate learning and on social issues in mathematics education, suggesting that social network analysis may provide a bridge between mathematics education researchers who focus on cognitive and on social issues.

Journal for Research in Mathematics Education
  • 1.

    Alcock L Attridge N Kenny S & Inglis M (2014). Achievement and behavior in undergraduate mathematics: Personality is a better predictor than gender. Research in Mathematics Education, 16(1), 117. doi:https://doi.org/10.1080/14794802.2013.874094

    • Search Google Scholar
    • Export Citation
  • 2.

    Babcock P & Marks M (2011). The falling time cost of college: Evidence from half a century of time use data. Review of Economics and Statistics, 93(2), 468478. doi:https://doi.org/10.1162/REST_a_00093

    • Search Google Scholar
    • Export Citation
  • 3.

    Bakshy E Rosenn I Marlow C & Adamic L (2012). The role of social networks in information diffusion. In Proceedings of the 21st International Conference on World Wide Web (pp. 519528). New York, NY: Association for Computing Machinery. doi:https://doi.org/10.1145/2187836.2187907

    • Search Google Scholar
    • Export Citation
  • 4.

    Boaler J (2008). Promoting “relational equity” and high mathematics achievement through an innovative mixed-ability approach. British Educational Research Journal, 34(2), 167194. doi:https://doi.org/10.1080/01411920701532145

    • Search Google Scholar
    • Export Citation
  • 5.

    Borgatti SP Carley KM & Krackhardt D (2006). On the robustness of centrality measures under conditions of imperfect data. Social Networks, 28(2), 124136. doi:https://doi.org/10.1016/j.socnet.2005.05.001

    • Search Google Scholar
    • Export Citation
  • 6.

    Borgatti SP & Everett MG (2006). A graph-theoretic perspective on centrality. Social Networks, 28(4), 466484. doi:https://doi.org/10.1016/j.socnet.2005.11.005

    • Search Google Scholar
    • Export Citation
  • 7.

    Borgatti SP Everett MG & Freeman LC (2002). UCINET 6 for Windows: Software for social network analysis. Harvard, MA: Analytic Technologies.

    • Search Google Scholar
    • Export Citation
  • 8.

    Borgatti SP Everett MG & Johnson JC (2013). Analyzing social networks. London, UK: Sage.

  • 9.

    Borgatti SP & Halgin DS (2011). On network theory. Organization Science, 22(5), 11681181. doi:https://doi.org/10.1287/orsc.1100.0641

  • 10.

    Bourdieu P (1986). The forms of capital. In Richardson JG (Ed.), Handbook of theory and research for the sociology of education (pp. 241258). Westport, CT: Greenwood.

    • Search Google Scholar
    • Export Citation
  • 11.

    Brewe E Kramer L & Sawtelle V (2012). Investigating student communities with network analysis of interactions in a physics learning center. Physical Review Physics Education Research, 8(1), 010101. doi:https://doi.org/10.1103/PhysRevSTPER.8.010101

    • Search Google Scholar
    • Export Citation
  • 12.

    Bridwell-Mitchell EN (2017). Them that’s got: How tie formation in partnership networks gives high schools differential access to social capital. American Educational Research Journal, 54(6), 12211255. doi:https://doi.org/10.3102/0002831217717815

    • Search Google Scholar
    • Export Citation
  • 13.

    Bruun J & Brewe E (2013). Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores. Physical Review Physics Education Research, 9(2), 020109. doi:https://doi.org/10.1103/PhysRevSTPER.9.020109

    • Search Google Scholar
    • Export Citation
  • 14.

    Burt RS (2000). The network structure of social capital. Research in Organizational Behavior, 22, 345423. doi:https://doi.org/10.1016/S0191-3085(00)22009-1

    • Search Google Scholar
    • Export Citation
  • 15.

    Carolan BV (2013). Social network analysis and education: Theory, methods & applications. Los Angeles, CA: Sage.

  • 16.

    Centola D (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 11941197. doi:https://doi.org/10.1126/science.1185231

    • Search Google Scholar
    • Export Citation
  • 17.

    Choudry S Williams J & Black L (2017). Peer relations and access to capital in the mathematics classroom: A Bourdieusian social network analysis. British Journal of Sociology of Education, 38(7), 10371053. doi:https://doi.org/10.1080/01425692.2016.1245129

    • Search Google Scholar
    • Export Citation
  • 18.

    Christakis NA & Fowler JH (2007). The spread of obesity in a large social network over 32 years. New England Journal of Medicine, 357(4), 370379. doi:https://doi.org/10.1056/NEJMsa066082

    • Search Google Scholar
    • Export Citation
  • 19.

    Christakis NA & Fowler JH (2013). Social contagion theory: Examining dynamic social networks and human behavior. Statistics in Medicine, 32(4), 556577. doi:https://doi.org/10.1002/sim.5408

    • Search Google Scholar
    • Export Citation
  • 20.

    Cobb P Stephan M McClain K & Gravemeijer K (2011). Participating in classroom mathematical practices. In Yackel E Gravemeijer K & Sfard A (Eds.), A journey in mathematics education research: Insights from the work of Paul Cobb (pp. 117163). Dordrecht, the Netherlands: Springer. doi:https://doi.org/10.1007/978-90-481-9729-3_9

    • Search Google Scholar
    • Export Citation
  • 21.

    Coburn CE Choi L & Mata W (2010). “I would go to her because her mind is math”: Network formation in the context of a district-based mathematics reform. In Daly AJ (Ed.), Social network theory and educational change (pp. 3350). Cambridge, MA: Harvard Education Press.

    • Search Google Scholar
    • Export Citation
  • 22.

    Coleman JS (1988). Social capital in the creation of human capital. American Journal of Sociology, 94, S95S120. doi:https://doi.org/10.1086/228943

    • Search Google Scholar
    • Export Citation
  • 23.

    Crosnoe R & Schneider B (2010). Social capital, information, and socioeconomic disparities in math course work. American Journal of Education, 117(1), 79107. doi:https://doi.org/10.1086/656347

    • Search Google Scholar
    • Export Citation
  • 24.

    Dika SL & Singh K (2002). Applications of social capital in educational literature: A critical synthesis. Review of Educational Research, 72(1), 3160. doi:https://doi.org/10.3102/00346543072001031

    • Search Google Scholar
    • Export Citation
  • 25.

    Dou R Brewe E Zwolak JP Potvin G Williams EA & Kramer LH (2016). Beyond performance metrics: Examining a decrease in students’ physics self-efficacy through a social networks lens. Physical Review Physics Education Research, 12(2), 020124. doi:https://doi.org/10.1103/PhysRevPhysEducRes.12.020124

    • Search Google Scholar
    • Export Citation
  • 26.

    Duah F Croft T & Inglis M (2014). Can peer assisted learning be effective in undergraduate mathematics? International Journal of Mathematical Education in Science and Technology, 45(4), 552565. doi:https://doi.org/10.1080/0020739X.2013.855329

    • Search Google Scholar
    • Export Citation
  • 27.

    Ellis J Kelton ML & Rasmussen C (2014). Student perceptions of pedagogy and associated persistence in calculus. ZDM Mathematics Education, 46(4), 661673. doi:https://doi.org/10.1007/s11858-014-0577-z

    • Search Google Scholar
    • Export Citation
  • 28.

    Goddard RD (2003). Relational networks, social trust, and norms: A social capital perspective on students’ chances of academic success. Educational Evaluation and Policy Analysis, 25(1), 5974. doi:https://doi.org/10.3102/01623737025001059

    • Search Google Scholar
    • Export Citation
  • 29.

    Goos M Galbraith P & Renshaw P (2002). Socially mediated metacognition: Creating collaborative zones of proximal development in small group problem solving. Educational Studies in Mathematics, 49(2), 193223. doi:https://doi.org/10.1023/A:1016209010120

    • Search Google Scholar
    • Export Citation
  • 30.

    Gutiérrez R (2013). The sociopolitical turn in mathematics education. Journal for Research in Mathematics Education, 44(1), 3768. doi:https://doi.org/10.5951/jresematheduc.44.1.0037

    • Search Google Scholar
    • Export Citation
  • 31.

    Hayward CN Kogan M & Laursen SL (2016). Facilitating instructor adoption of inquiry-based learning in college mathematics. International Journal of Research in Undergraduate Mathematics Education, 2(1), 5982. doi:https://doi.org/10.1007/s40753-015-0021-y

    • Search Google Scholar
    • Export Citation
  • 32.

    Hernandez-Martinez P & Williams J (2013). Against the odds: Resilience in mathematics students in transition. British Educational Research Journal, 39(1), 4559. doi:https://doi.org/10.1080/01411926.2011.623153

    • Search Google Scholar
    • Export Citation
  • 33.

    Hodds M Alcock L & Inglis M (2014). Self-explanation training improves proof comprehension. Journal for Research in Mathematics Education, 45(1), 62101. doi:https://doi.org/10.5951/jresematheduc.45.1.0062

    • Search Google Scholar
    • Export Citation
  • 34.

    Hopkins M Ozimek D & Sweet TM (2017). Mathematics coaching and instructional reform: Individual and collective change. The Journal of Mathematical Behavior, 46, 215230. doi:https://doi.org/10.1016/j.jmathb.2016.11.003

    • Search Google Scholar
    • Export Citation
  • 35.

    Huisman M & Steglich C (2008). Treatment of non-response in longitudinal network studies. Social Networks, 30(4), 297308. doi:https://doi.org/10.1016/j.socnet.2008.04.004

    • Search Google Scholar
    • Export Citation
  • 36.

    Inglis M & Foster C (2018). Five decades of mathematics education research. Journal for Research in Mathematics Education, 49(4), 462500. doi:https://doi.org/10.5951/jresematheduc.49.4.0462

    • Search Google Scholar
    • Export Citation
  • 37.

    Inglis M Palipana A Trenholm S & Ward J (2011). Individual differences in students’ use of optional learning resources. Journal of Computer Assisted Learning, 27(6), 490502. doi:https://doi.org/10.1111/j.1365-2729.2011.00417.x

    • Search Google Scholar
    • Export Citation
  • 38.

    Jablonka E Wagner D & Walshaw M (2012). Theories for studying social, political and cultural dimensions of mathematics education. In Clements MA Bishop AJ Keitel C Kilpatrick J & Leung FKS (Eds.), Third international handbook of mathematics education (pp. 4167). New York, NY: Springer. doi:https://doi.org/10.1007/978-1-4614-4684-2_2

    • Search Google Scholar
    • Export Citation
  • 39.

    Johnson E Caughman J Fredericks J & Gibson L (2013). Implementing inquiry-oriented curriculum: From the mathematicians’ perspective. The Journal of Mathematical Behavior, 32(4), 743760. doi:https://doi.org/10.1016/j.jmathb.2013.03.003

    • Search Google Scholar
    • Export Citation
  • 40.

    Jorgensen R Gates P & Roper V (2014). Structural exclusion through school mathematics: Using Bourdieu to understand mathematics as a social practice. Educational Studies in Mathematics, 87(2), 221239. doi:https://doi.org/10.1007/s10649-013-9468-4

    • Search Google Scholar
    • Export Citation
  • 41.

    Kossinets G (2006). Effects of missing data in social networks. Social Networks, 28(3), 247268. doi:https://doi.org/10.1016/j.socnet.2005.07.002

    • Search Google Scholar
    • Export Citation
  • 42.

    Kurotsuchi Inkelas K Daver ZE Vogt KE & Brown Leonard J (2007). Living–learning programs and first-generation college students’ academic and social transition to college. Research in Higher Education, 48(4), 403434. doi:https://doi.org/10.1007/s11162-006-9031-6

    • Search Google Scholar
    • Export Citation
  • 43.

    Larsen SP (2013). A local instructional theory for the guided reinvention of the group and isomorphism concepts. The Journal of Mathematical Behavior, 32(4), 712725. doi:https://doi.org/10.1016/j.jmathb.2013.04.006

    • Search Google Scholar
    • Export Citation
  • 44.

    Larsen S & Zandieh M (2008). Proofs and refutations in the undergraduate mathematics classroom. Educational Studies in Mathematics, 67(3), 185198. doi:https://doi.org/10.1007/s10649-007-9106-0

    • Search Google Scholar
    • Export Citation
  • 45.

    Laumann EO Marsden PV & Prensky D (1983). The boundary specification problem in network analysis. In Burt RS & Minor MJ (Eds.), Applied network analysis: A methodological introduction (pp. 1834). Beverly Hills, CA: Sage.

    • Search Google Scholar
    • Export Citation
  • 46.

    Lee J & Bonk CJ (2016). Social network analysis of peer relationships and online interactions in a blended class using blogs. The Internet and Higher Education, 28, 3544. doi:https://doi.org/10.1016/j.iheduc.2015.09.001

    • Search Google Scholar
    • Export Citation
  • 47.

    Lerman S (2000). The social turn in mathematics education research. In Boaler J (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 1944). Westport, CT: Ablex.

    • Search Google Scholar
    • Export Citation
  • 48.

    McCormick R Fox A Carmichael P & Procter R (2010). Researching and understanding educational networks. London, UK: Routledge. doi:https://doi.org/10.4324/9780203849170

    • Search Google Scholar
    • Export Citation
  • 49.

    McPherson M Smith-Lovin L & Cook JM (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415444. doi:https://doi.org/10.1146/annurev.soc.27.1.415

    • Search Google Scholar
    • Export Citation
  • 50.

    Mendick H (2006). Masculinities in mathematics. Maidenhead, UK: Open University Press.

  • 51.

    Morgan SL & Sørensen AB (1999). Parental networks, social closure, and mathematics learning: A test of Coleman’s social capital explanation of school effects. American Sociological Review, 64(5), 661681. doi:https://doi.org/10.2307/2657368

    • Search Google Scholar
    • Export Citation
  • 52.

    Perkin G & Croft T (2004). Mathematics support centers—the extent of current provision. MSOR Connections, 4(2), 1418. doi:https://doi.org/10.11120/msor.2004.04020014

    • Search Google Scholar
    • Export Citation
  • 53.

    Rasmussen C & Marrongelle K (2006). Pedagogical content tools: Integrating student reasoning and mathematics in instruction. Journal for Research in Mathematics Education, 37(5), 388420.

    • Search Google Scholar
    • Export Citation
  • 54.

    Rasmussen C Zandieh M & Wawro M (2010). Brokering as a mechanism for the social production of meaning. In ICLS ’10 Proceedings of the 9th International Conference of the Learning Sciences (Vol. 2, pp. 3335). Chicago, IL: International Society of the Learning Sciences.

    • Search Google Scholar
    • Export Citation
  • 55.

    Rivera MT Soderstrom SB & Uzzi B (2010). Dynamics of dyads in social networks: Assortative, relational, and proximity mechanisms. Annual Review of Sociology, 36, 91115. doi:https://doi.org/10.1146/annurev.soc.34.040507.134743

    • Search Google Scholar
    • Export Citation
  • 56.

    Ryve A (2011). Discourse research in mathematics education: A critical evaluation of 108 journal articles. Journal for Research in Mathematics Education, 42(2), 167199. doi:https://doi.org/10.5951/jresematheduc.42.2.0167

    • Search Google Scholar
    • Export Citation
  • 57.

    Shalizi CR & Thomas AC (2011). Homophily and contagion are generically confounded in observational social network studies. Sociological Methods & Research, 40(2), 211239. doi:https://doi.org/10.1177/0049124111404820

    • Search Google Scholar
    • Export Citation
  • 58.

    Solomon Y (2012). Finding a voice? Narrating the female self in mathematics. Educational Studies in Mathematics, 80(1–2), 171183. doi:https://doi.org/10.1007/s10649-012-9384-z

    • Search Google Scholar
    • Export Citation
  • 59.

    Stassen MLA (2003). Student outcomes: The impact of varying living-learning community models. Research in Higher Education, 44(5), 581613. doi:https://doi.org/10.1023/A:1025495309569

    • Search Google Scholar
    • Export Citation
  • 60.

    Steglich C Snijders TA & Pearson M (2010). Dynamic networks and behavior: Separating selection from influence. Sociological Methodology, 40(1), 329393. doi:https://doi.org/10.1023/A:1025495309569

    • Search Google Scholar
    • Export Citation
  • 61.

    Thomas SL (2000). Ties that bind: A social network approach to understanding student integration and persistence. The Journal of Higher Education, 71(5), 591615. doi:https://doi.org/10.1080/00221546.2000.11778854

    • Search Google Scholar
    • Export Citation
  • 62.

    Wenger E (1998). Communities of practice: Learning, meaning, and identity. Cambridge, UK: Cambridge University Press.

  • 63.

    Yackel E & Cobb P (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458477. doi:https://doi.org/10.2307/749877

    • Search Google Scholar
    • Export Citation
  • 64.

    Yin RK (2003). Case study research: Design and methods (3rd ed.). Thousand Oaks, CA: Sage.

Metrics

All Time Past Year Past 30 Days
Abstract Views 263 263 43
Full Text Views 145 145 11
PDF Downloads 102 102 18
EPUB Downloads 0 0 0